PPy-Coated Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> Nanotube-like Heterostructure for High-Performance Lithium Storage

Heterostructured materials show great potential to enhance the specific capacity, rate performance and cycling lifespan of lithium-ion batteries owing to their unique interfaces, robust architectures, and synergistic effects. Herein, a polypyrrole (PPy)-coated nanotube-like Mo<sub>3</sub>...

Full description

Bibliographic Details
Main Authors: Fei Tang, Wei Jiang, Jingjing Xie, Deyang Zhao, Yanfeng Meng, Zhenglong Yang, Zhiqiang Lv, Yanbin Xu, Wenjuan Sun, Ziqiao Jiang
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/29/1/234
_version_ 1797358380087508992
author Fei Tang
Wei Jiang
Jingjing Xie
Deyang Zhao
Yanfeng Meng
Zhenglong Yang
Zhiqiang Lv
Yanbin Xu
Wenjuan Sun
Ziqiao Jiang
author_facet Fei Tang
Wei Jiang
Jingjing Xie
Deyang Zhao
Yanfeng Meng
Zhenglong Yang
Zhiqiang Lv
Yanbin Xu
Wenjuan Sun
Ziqiao Jiang
author_sort Fei Tang
collection DOAJ
description Heterostructured materials show great potential to enhance the specific capacity, rate performance and cycling lifespan of lithium-ion batteries owing to their unique interfaces, robust architectures, and synergistic effects. Herein, a polypyrrole (PPy)-coated nanotube-like Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> heterostructure is prepared by the hydrothermal and subsequent in situ polymerization methods. The well-designed nanotube-like structure is beneficial to relieve the serious volume changes and facilitate the infiltration of electrolytes during the charge/discharge process. The Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> heterostructure could effectively enhance the electrical conductivity and Li<sup>+</sup> transport kinetics owing to the refined energy band structure and the internal electric field at the heterostructure interface. Moreover, the conductive PPy-coated layer could inhibit the obvious volume expansion like a firm armor and further avoid the pulverization of the active material and aggregation of generated products. Benefiting from the synergistic effects of the well-designed heterostructure and PPy-coated nanotube-like architecture, the prepared Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> heterostructure delivers high reversible capacity (1251.3 mAh g<sup>−1</sup> at 300 mA g<sup>−1</sup>), superior rate performance (340.3 mAh g<sup>−1</sup> at 5.0 A g<sup>−1</sup>) and excellent cycling lifespan (744.1 mAh g<sup>−1</sup> after 600 cycles at a current density of 2.0 A g<sup>−1</sup>). Such a design concept provides a promising strategy towards heterostructure materials to enhance their lithium storage performances and boost their practical applications.
first_indexed 2024-03-08T15:01:08Z
format Article
id doaj.art-2b4a1ba91aea4a578e78385d1b1406ae
institution Directory Open Access Journal
issn 1420-3049
language English
last_indexed 2024-03-08T15:01:08Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj.art-2b4a1ba91aea4a578e78385d1b1406ae2024-01-10T15:04:35ZengMDPI AGMolecules1420-30492023-12-0129123410.3390/molecules29010234PPy-Coated Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> Nanotube-like Heterostructure for High-Performance Lithium StorageFei Tang0Wei Jiang1Jingjing Xie2Deyang Zhao3Yanfeng Meng4Zhenglong Yang5Zhiqiang Lv6Yanbin Xu7Wenjuan Sun8Ziqiao Jiang9School of Chemistry and Materials Science, Ludong University, Yantai 264025, ChinaSchool of Chemistry and Materials Science, Ludong University, Yantai 264025, ChinaSchool of Chemistry and Materials Science, Ludong University, Yantai 264025, ChinaSchool of Chemistry and Materials Science, Ludong University, Yantai 264025, ChinaSchool of Chemistry and Materials Science, Ludong University, Yantai 264025, ChinaSchool of Chemistry and Materials Science, Ludong University, Yantai 264025, ChinaSchool of Chemistry and Materials Science, Ludong University, Yantai 264025, ChinaSchool of Chemistry and Materials Science, Ludong University, Yantai 264025, ChinaSchool of Chemistry and Materials Science, Ludong University, Yantai 264025, ChinaSchool of Chemistry and Materials Science, Ludong University, Yantai 264025, ChinaHeterostructured materials show great potential to enhance the specific capacity, rate performance and cycling lifespan of lithium-ion batteries owing to their unique interfaces, robust architectures, and synergistic effects. Herein, a polypyrrole (PPy)-coated nanotube-like Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> heterostructure is prepared by the hydrothermal and subsequent in situ polymerization methods. The well-designed nanotube-like structure is beneficial to relieve the serious volume changes and facilitate the infiltration of electrolytes during the charge/discharge process. The Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> heterostructure could effectively enhance the electrical conductivity and Li<sup>+</sup> transport kinetics owing to the refined energy band structure and the internal electric field at the heterostructure interface. Moreover, the conductive PPy-coated layer could inhibit the obvious volume expansion like a firm armor and further avoid the pulverization of the active material and aggregation of generated products. Benefiting from the synergistic effects of the well-designed heterostructure and PPy-coated nanotube-like architecture, the prepared Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> heterostructure delivers high reversible capacity (1251.3 mAh g<sup>−1</sup> at 300 mA g<sup>−1</sup>), superior rate performance (340.3 mAh g<sup>−1</sup> at 5.0 A g<sup>−1</sup>) and excellent cycling lifespan (744.1 mAh g<sup>−1</sup> after 600 cycles at a current density of 2.0 A g<sup>−1</sup>). Such a design concept provides a promising strategy towards heterostructure materials to enhance their lithium storage performances and boost their practical applications.https://www.mdpi.com/1420-3049/29/1/234lithium-ion batteriesheterostructurenanostructure designMo<sub>3</sub>S<sub>4</sub>CoMo<sub>2</sub>S<sub>4</sub>
spellingShingle Fei Tang
Wei Jiang
Jingjing Xie
Deyang Zhao
Yanfeng Meng
Zhenglong Yang
Zhiqiang Lv
Yanbin Xu
Wenjuan Sun
Ziqiao Jiang
PPy-Coated Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> Nanotube-like Heterostructure for High-Performance Lithium Storage
Molecules
lithium-ion batteries
heterostructure
nanostructure design
Mo<sub>3</sub>S<sub>4</sub>
CoMo<sub>2</sub>S<sub>4</sub>
title PPy-Coated Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> Nanotube-like Heterostructure for High-Performance Lithium Storage
title_full PPy-Coated Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> Nanotube-like Heterostructure for High-Performance Lithium Storage
title_fullStr PPy-Coated Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> Nanotube-like Heterostructure for High-Performance Lithium Storage
title_full_unstemmed PPy-Coated Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> Nanotube-like Heterostructure for High-Performance Lithium Storage
title_short PPy-Coated Mo<sub>3</sub>S<sub>4</sub>/CoMo<sub>2</sub>S<sub>4</sub> Nanotube-like Heterostructure for High-Performance Lithium Storage
title_sort ppy coated mo sub 3 sub s sub 4 sub como sub 2 sub s sub 4 sub nanotube like heterostructure for high performance lithium storage
topic lithium-ion batteries
heterostructure
nanostructure design
Mo<sub>3</sub>S<sub>4</sub>
CoMo<sub>2</sub>S<sub>4</sub>
url https://www.mdpi.com/1420-3049/29/1/234
work_keys_str_mv AT feitang ppycoatedmosub3subssub4subcomosub2subssub4subnanotubelikeheterostructureforhighperformancelithiumstorage
AT weijiang ppycoatedmosub3subssub4subcomosub2subssub4subnanotubelikeheterostructureforhighperformancelithiumstorage
AT jingjingxie ppycoatedmosub3subssub4subcomosub2subssub4subnanotubelikeheterostructureforhighperformancelithiumstorage
AT deyangzhao ppycoatedmosub3subssub4subcomosub2subssub4subnanotubelikeheterostructureforhighperformancelithiumstorage
AT yanfengmeng ppycoatedmosub3subssub4subcomosub2subssub4subnanotubelikeheterostructureforhighperformancelithiumstorage
AT zhenglongyang ppycoatedmosub3subssub4subcomosub2subssub4subnanotubelikeheterostructureforhighperformancelithiumstorage
AT zhiqianglv ppycoatedmosub3subssub4subcomosub2subssub4subnanotubelikeheterostructureforhighperformancelithiumstorage
AT yanbinxu ppycoatedmosub3subssub4subcomosub2subssub4subnanotubelikeheterostructureforhighperformancelithiumstorage
AT wenjuansun ppycoatedmosub3subssub4subcomosub2subssub4subnanotubelikeheterostructureforhighperformancelithiumstorage
AT ziqiaojiang ppycoatedmosub3subssub4subcomosub2subssub4subnanotubelikeheterostructureforhighperformancelithiumstorage