Selective Oxidation of Glycerol with 3% H2O2 Catalyzed by LDH-Hosted Cr(III) Complex

A series of layered double hydroxides (LDHs) –hosted sulphonato-salen Cr(III) complexes were prepared and characterized by various physico-chemical measurements, such as Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmi...

Full description

Bibliographic Details
Main Authors: Gongde Wu, Xiaoli Wang, Taineng Jiang, Qibo Lin
Format: Article
Language:English
Published: MDPI AG 2015-11-01
Series:Catalysts
Subjects:
Online Access:http://www.mdpi.com/2073-4344/5/4/2039
Description
Summary:A series of layered double hydroxides (LDHs) –hosted sulphonato-salen Cr(III) complexes were prepared and characterized by various physico-chemical measurements, such as Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and elemental analysis. Additionally, their catalytic performances were investigated in the selective oxidation of glycerol (GLY) using 3% H2O2 as an oxidant. It was found that all the LDH-hosted Cr(III) complexes exhibited significantly enhanced catalytic performance compared to the homogeneous Cr(III) complex. Additionally, it was worth mentioning that the metal composition of LDH plates played an important role in the catalytic performances of LDH-hosted Cr(III) complex catalysts. Under the optimal reaction conditions, the highest GLY conversion reached 85.5% with 59.3% of the selectivity to 1,3-dihydroxyacetone (DHA). In addition, the catalytic activity remained after being recycled five times.
ISSN:2073-4344