Nonlinear boundary value problem for nonlinear second order differential equations with impulses

The paper deals with the impulsive nonlinear boundary value problem \[ u''(t) = f(t,u(t),u'(t)) \quad\mbox{for a.e.}\ t \in [0,T], \] \[ u(t_j+) = J_j(u(t_j)),\quad u'(t_j+) = M_j(u'(t_j)),\quad j = 1,\ldots,m, \] \[ g_1(u(0),u(T)) = 0, \quad g_2(u'(0),u'(T)) = 0,...

Full description

Bibliographic Details
Main Author: Jan Tomeček
Format: Article
Language:English
Published: University of Szeged 2005-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=218
_version_ 1827951410741772288
author Jan Tomeček
author_facet Jan Tomeček
author_sort Jan Tomeček
collection DOAJ
description The paper deals with the impulsive nonlinear boundary value problem \[ u''(t) = f(t,u(t),u'(t)) \quad\mbox{for a.e.}\ t \in [0,T], \] \[ u(t_j+) = J_j(u(t_j)),\quad u'(t_j+) = M_j(u'(t_j)),\quad j = 1,\ldots,m, \] \[ g_1(u(0),u(T)) = 0, \quad g_2(u'(0),u'(T)) = 0, \] where $f \in Car([0,T]\times\mathbb{R}^{2})$, $g_1$, $g_2 \in C(\mathbb{R}^2)$, $J_j$, $M_j \in C(\mathbb{R})$. An existence theorem is proved for non-ordered lower and upper functions. Proofs are based on the Leray–Schauder degree and on the method of a priori estimates.
first_indexed 2024-04-09T13:41:20Z
format Article
id doaj.art-2b509fa9bad5416786ea0cb817de7b8b
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:41:20Z
publishDate 2005-05-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-2b509fa9bad5416786ea0cb817de7b8b2023-05-09T07:52:57ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752005-05-0120051012210.14232/ejqtde.2005.1.10218Nonlinear boundary value problem for nonlinear second order differential equations with impulsesJan Tomeček0Palacky University, Olomouc, Czech RepublicThe paper deals with the impulsive nonlinear boundary value problem \[ u''(t) = f(t,u(t),u'(t)) \quad\mbox{for a.e.}\ t \in [0,T], \] \[ u(t_j+) = J_j(u(t_j)),\quad u'(t_j+) = M_j(u'(t_j)),\quad j = 1,\ldots,m, \] \[ g_1(u(0),u(T)) = 0, \quad g_2(u'(0),u'(T)) = 0, \] where $f \in Car([0,T]\times\mathbb{R}^{2})$, $g_1$, $g_2 \in C(\mathbb{R}^2)$, $J_j$, $M_j \in C(\mathbb{R})$. An existence theorem is proved for non-ordered lower and upper functions. Proofs are based on the Leray–Schauder degree and on the method of a priori estimates.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=218
spellingShingle Jan Tomeček
Nonlinear boundary value problem for nonlinear second order differential equations with impulses
Electronic Journal of Qualitative Theory of Differential Equations
title Nonlinear boundary value problem for nonlinear second order differential equations with impulses
title_full Nonlinear boundary value problem for nonlinear second order differential equations with impulses
title_fullStr Nonlinear boundary value problem for nonlinear second order differential equations with impulses
title_full_unstemmed Nonlinear boundary value problem for nonlinear second order differential equations with impulses
title_short Nonlinear boundary value problem for nonlinear second order differential equations with impulses
title_sort nonlinear boundary value problem for nonlinear second order differential equations with impulses
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=218
work_keys_str_mv AT jantomecek nonlinearboundaryvalueproblemfornonlinearsecondorderdifferentialequationswithimpulses