Design and Non-Linear Modeling of New Wind Girder Used for Bolted Tanks

Large-capacity bolted cylindrical tanks for liquid storage are used in many applications. The tanks are made of thin steel sheets that are connected by bolts. A common problem associated with tanks is deforming under extreme loads. Adding wind girders to the tank increases the tank’s buckling capaci...

Full description

Bibliographic Details
Main Authors: Lukas Drahorad, Pavel Marsalek, Juraj Hroncek, David Rybansky, Martin Sotola, Zdenek Poruba, Michal Larys
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/13/11/2724
Description
Summary:Large-capacity bolted cylindrical tanks for liquid storage are used in many applications. The tanks are made of thin steel sheets that are connected by bolts. A common problem associated with tanks is deforming under extreme loads. Adding wind girders to the tank increases the tank’s buckling capacity, which is defined as the limit load at which the structure loses stability. The girders are usually placed in the horizontal joints of the tank wall. The girders are bent from standard or non-standard steel bars with a uniform cross-section. This type of design is difficult to produce, especially with large profiles or large curvatures, to avoid distortion of the cross-section during bending. Furthermore, the girders are customized to the given openings and curvature for various tank diameters. The resulting solution is then uneconomical and more complicated to store. This paper deals with the design and non-linear modeling of a new shape of wind girder for bolted tanks that eliminates the above-mentioned disadvantages. To analyze the new shape of the girder, a non-linear numerical model of an open-topped tank with various dimensions is designed to study its buckling capacity.
ISSN:2075-5309