Superconductivity at epitaxial LaTiO3–KTaO3 interfaces

The design of epitaxial interfaces is a pivotal way to engineer artificial structures where new electronic phases can emerge. Here, we report a systematic emergence of an interfacial superconducting state in epitaxial heterostructures of LaTiO3 and KTaO3. The superconductivity transition temperature...

Full description

Bibliographic Details
Main Authors: D. Maryenko, I. V. Maznichenko, S. Ostanin, M. Kawamura, K. S. Takahashi, M. Nakamura, V. K. Dugaev, E. Ya. Sherman, A. Ernst, M. Kawasaki
Format: Article
Language:English
Published: AIP Publishing LLC 2023-06-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/5.0151227
Description
Summary:The design of epitaxial interfaces is a pivotal way to engineer artificial structures where new electronic phases can emerge. Here, we report a systematic emergence of an interfacial superconducting state in epitaxial heterostructures of LaTiO3 and KTaO3. The superconductivity transition temperature increases with decreasing thickness of LaTiO3. Such a behavior is observed for both (110) and (111) crystal oriented structures. For thick samples, the finite resistance developing below the superconducting transition temperature increases with increasing LaTiO3 thickness. Consistent with previous reports, the (001) oriented heterointerface features a high electron mobility of 250 cm2 V−1 s−1 and shows no superconducting transition down to 40 mK. Our results imply a non-trivial impact of LaTiO3 on the superconducting state and indicate how superconducting KTaO3 interfaces can be integrated with other oxide materials.
ISSN:2166-532X