Asymptotics for minimal overlapping patterns for generalized Euler permutations, standard tableaux of rectangular shape, and column strict arrays

A permutation $\tau$ in the symmetric group $S_j$ is minimally overlapping if any two consecutive occurrences of $\tau$ in a permutation $\sigma$ can share at most one element. B\'ona \cite{B} showed that the proportion of minimal overlapping patterns in $S_j$ is at least $3 -e$. Given a permut...

Full description

Bibliographic Details
Main Authors: Ran Pan, Jeffrey B. Remmel
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2016-05-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/1315/pdf
Description
Summary:A permutation $\tau$ in the symmetric group $S_j$ is minimally overlapping if any two consecutive occurrences of $\tau$ in a permutation $\sigma$ can share at most one element. B\'ona \cite{B} showed that the proportion of minimal overlapping patterns in $S_j$ is at least $3 -e$. Given a permutation $\sigma$, we let $\text{Des}(\sigma)$ denote the set of descents of $\sigma$. We study the class of permutations $\sigma \in S_{kn}$ whose descent set is contained in the set $\{k,2k, \ldots (n-1)k\}$. For example, up-down permutations in $S_{2n}$ are the set of permutations whose descent equal $\sigma$ such that $\text{Des}(\sigma) = \{2,4, \ldots, 2n-2\}$. There are natural analogues of the minimal overlapping permutations for such classes of permutations and we study the proportion of minimal overlapping patterns for each such class. We show that the proportion of minimal overlapping permutations in such classes approaches $1$ as $k$ goes to infinity. We also study the proportion of minimal overlapping patterns in standard Young tableaux of shape $(n^k)$.
ISSN:1365-8050