Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data Processing

The Wasserstein distance, especially among symmetric positive-definite matrices, has broad and deep influences on the development of artificial intelligence (AI) and other branches of computer science. In this paper, by involving the Wasserstein metric on <inline-formula><math xmlns="h...

Full description

Bibliographic Details
Main Authors: Yihao Luo, Shiqiang Zhang, Yueqi Cao, Huafei Sun
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/9/1214
_version_ 1797519329668890624
author Yihao Luo
Shiqiang Zhang
Yueqi Cao
Huafei Sun
author_facet Yihao Luo
Shiqiang Zhang
Yueqi Cao
Huafei Sun
author_sort Yihao Luo
collection DOAJ
description The Wasserstein distance, especially among symmetric positive-definite matrices, has broad and deep influences on the development of artificial intelligence (AI) and other branches of computer science. In this paper, by involving the Wasserstein metric on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>P</mi><mi>D</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, we obtain computationally feasible expressions for some geometric quantities, including geodesics, exponential maps, the Riemannian connection, Jacobi fields and curvatures, particularly the scalar curvature. Furthermore, we discuss the behavior of geodesics and prove that the manifold is globally geodesic convex. Finally, we design algorithms for point cloud denoising and edge detecting of a polluted image based on the Wasserstein curvature on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>P</mi><mi>D</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>. The experimental results show the efficiency and robustness of our curvature-based methods.
first_indexed 2024-03-10T07:41:20Z
format Article
id doaj.art-2b744b75e338452f8dba28072437de3c
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T07:41:20Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-2b744b75e338452f8dba28072437de3c2023-11-22T12:58:26ZengMDPI AGEntropy1099-43002021-09-01239121410.3390/e23091214Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data ProcessingYihao Luo0Shiqiang Zhang1Yueqi Cao2Huafei Sun3School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, ChinaDepartment of Computing, Imperial College London, London SW7 2AZ, UKDepartment of Mathematics, Imperial College London, London SW7 2AZ, UKSchool of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, ChinaThe Wasserstein distance, especially among symmetric positive-definite matrices, has broad and deep influences on the development of artificial intelligence (AI) and other branches of computer science. In this paper, by involving the Wasserstein metric on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>P</mi><mi>D</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, we obtain computationally feasible expressions for some geometric quantities, including geodesics, exponential maps, the Riemannian connection, Jacobi fields and curvatures, particularly the scalar curvature. Furthermore, we discuss the behavior of geodesics and prove that the manifold is globally geodesic convex. Finally, we design algorithms for point cloud denoising and edge detecting of a polluted image based on the Wasserstein curvature on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>P</mi><mi>D</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>. The experimental results show the efficiency and robustness of our curvature-based methods.https://www.mdpi.com/1099-4300/23/9/1214symmetric positive-definite matrixWasserstein metriccurvaturepoint cloud denoisingimage edge detecting
spellingShingle Yihao Luo
Shiqiang Zhang
Yueqi Cao
Huafei Sun
Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data Processing
Entropy
symmetric positive-definite matrix
Wasserstein metric
curvature
point cloud denoising
image edge detecting
title Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data Processing
title_full Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data Processing
title_fullStr Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data Processing
title_full_unstemmed Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data Processing
title_short Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data Processing
title_sort geometric characteristics of the wasserstein metric on spd n and its applications on data processing
topic symmetric positive-definite matrix
Wasserstein metric
curvature
point cloud denoising
image edge detecting
url https://www.mdpi.com/1099-4300/23/9/1214
work_keys_str_mv AT yihaoluo geometriccharacteristicsofthewassersteinmetriconspdnanditsapplicationsondataprocessing
AT shiqiangzhang geometriccharacteristicsofthewassersteinmetriconspdnanditsapplicationsondataprocessing
AT yueqicao geometriccharacteristicsofthewassersteinmetriconspdnanditsapplicationsondataprocessing
AT huafeisun geometriccharacteristicsofthewassersteinmetriconspdnanditsapplicationsondataprocessing