Summary: | The development of an efficient solid catalyst for Friedel−Crafts (FC) reactions is of great importance to organic synthetic chemistry. Herein, we reported the hafnium-doped mesoporous silica catalyst Hf/SBA-15 and its first use for Friedel−Crafts alkylation reactions. Catalysts with different Si/Hf ratios were prepared and characterized, among which Hf/SBA-15(20) (Si/Hf = 20:1) was the most active catalyst, offering up to 99.1% benzylated product under mild reaction conditions. The influences of reaction conditions on the product were systematically investigated and compared. Pyridine-IR characterization of the catalyst showed that Lewis acid formed the primary active sites for the Friedel−Crafts alkylation reaction. X-ray photoelectron spectroscopy (XPS) characterization revealed that the electron shift from the Hf center to the silica framework resulted in a more active Lewis metal center for FC reactions. Moreover, the catalyst was successfully applied to the alkylation reaction with different alcohols and aromatic compounds. Finally, the Hf/SBA-15(20) catalyst also showed good recyclability in the recycling runs, demonstrating its high potential of being used for large scale FC reactions in the industry.
|