Analytic Properties of Triangle Feynman Diagrams in Quantum Field Theory

We discuss dispersion representations for the triangle diagram <inline-formula> <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo>(</mo> <msup> <mi>q</mi> <mn>2</mn> </msup> <mo>,</mo> &...

Full description

Bibliographic Details
Main Author: Dmitri Melikhov
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Particles
Subjects:
Online Access:https://www.mdpi.com/2571-712X/3/1/9
Description
Summary:We discuss dispersion representations for the triangle diagram <inline-formula> <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo>(</mo> <msup> <mi>q</mi> <mn>2</mn> </msup> <mo>,</mo> <msubsup> <mi>p</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>p</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, the single dispersion representation in <inline-formula> <math display="inline"> <semantics> <msup> <mi>q</mi> <mn>2</mn> </msup> </semantics> </math> </inline-formula> and the double dispersion representation in <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>p</mi> <mn>1</mn> <mn>2</mn> </msubsup> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>p</mi> <mn>2</mn> <mn>2</mn> </msubsup> </semantics> </math> </inline-formula>, with special emphasis on the appearance of the anomalous singularities and the anomalous cuts in these representations.
ISSN:2571-712X