Suppressing thermalization and constructing weak solutions in truncated inviscid equations of hydrodynamics: Lessons from the Burgers equation
Finite-dimensional, inviscid equations of hydrodynamics, obtained through a Fourier-Galerkin projection, thermalize with an energy equipartition. Hence, numerical solutions of such inviscid equations, which typically must be Galerkin-truncated, show a behavior at odds with the parent equation. An im...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2020-08-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.2.033202 |
_version_ | 1797211319318872064 |
---|---|
author | Sugan Durai Murugan Uriel Frisch Sergey Nazarenko Nicolas Besse Samriddhi Sankar Ray |
author_facet | Sugan Durai Murugan Uriel Frisch Sergey Nazarenko Nicolas Besse Samriddhi Sankar Ray |
author_sort | Sugan Durai Murugan |
collection | DOAJ |
description | Finite-dimensional, inviscid equations of hydrodynamics, obtained through a Fourier-Galerkin projection, thermalize with an energy equipartition. Hence, numerical solutions of such inviscid equations, which typically must be Galerkin-truncated, show a behavior at odds with the parent equation. An important consequence of this is an uncertainty in the measurement of the temporal evolution of the distance of the complex singularity from the real domain leading to a lack of a firm conjecture on the finite-time blow-up problem in the incompressible, three-dimensional Euler equation. We now propose, by using the one-dimensional Burgers equation as a testing ground, a numerical recipe, named tyger purging, to arrest the onset of thermalization and hence recover the true dissipative solution. Our method, easily adapted for higher dimensions, provides a tool to not only tackle the celebrated blow-up problem but also to obtain weak and dissipative solutions—conjectured by Onsager and numerically elusive thus far—of the Euler equation. |
first_indexed | 2024-04-24T10:24:36Z |
format | Article |
id | doaj.art-2b844b530efe4032a017c4016c853e50 |
institution | Directory Open Access Journal |
issn | 2643-1564 |
language | English |
last_indexed | 2024-04-24T10:24:36Z |
publishDate | 2020-08-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review Research |
spelling | doaj.art-2b844b530efe4032a017c4016c853e502024-04-12T16:58:23ZengAmerican Physical SocietyPhysical Review Research2643-15642020-08-012303320210.1103/PhysRevResearch.2.033202Suppressing thermalization and constructing weak solutions in truncated inviscid equations of hydrodynamics: Lessons from the Burgers equationSugan Durai MuruganUriel FrischSergey NazarenkoNicolas BesseSamriddhi Sankar RayFinite-dimensional, inviscid equations of hydrodynamics, obtained through a Fourier-Galerkin projection, thermalize with an energy equipartition. Hence, numerical solutions of such inviscid equations, which typically must be Galerkin-truncated, show a behavior at odds with the parent equation. An important consequence of this is an uncertainty in the measurement of the temporal evolution of the distance of the complex singularity from the real domain leading to a lack of a firm conjecture on the finite-time blow-up problem in the incompressible, three-dimensional Euler equation. We now propose, by using the one-dimensional Burgers equation as a testing ground, a numerical recipe, named tyger purging, to arrest the onset of thermalization and hence recover the true dissipative solution. Our method, easily adapted for higher dimensions, provides a tool to not only tackle the celebrated blow-up problem but also to obtain weak and dissipative solutions—conjectured by Onsager and numerically elusive thus far—of the Euler equation.http://doi.org/10.1103/PhysRevResearch.2.033202 |
spellingShingle | Sugan Durai Murugan Uriel Frisch Sergey Nazarenko Nicolas Besse Samriddhi Sankar Ray Suppressing thermalization and constructing weak solutions in truncated inviscid equations of hydrodynamics: Lessons from the Burgers equation Physical Review Research |
title | Suppressing thermalization and constructing weak solutions in truncated inviscid equations of hydrodynamics: Lessons from the Burgers equation |
title_full | Suppressing thermalization and constructing weak solutions in truncated inviscid equations of hydrodynamics: Lessons from the Burgers equation |
title_fullStr | Suppressing thermalization and constructing weak solutions in truncated inviscid equations of hydrodynamics: Lessons from the Burgers equation |
title_full_unstemmed | Suppressing thermalization and constructing weak solutions in truncated inviscid equations of hydrodynamics: Lessons from the Burgers equation |
title_short | Suppressing thermalization and constructing weak solutions in truncated inviscid equations of hydrodynamics: Lessons from the Burgers equation |
title_sort | suppressing thermalization and constructing weak solutions in truncated inviscid equations of hydrodynamics lessons from the burgers equation |
url | http://doi.org/10.1103/PhysRevResearch.2.033202 |
work_keys_str_mv | AT suganduraimurugan suppressingthermalizationandconstructingweaksolutionsintruncatedinviscidequationsofhydrodynamicslessonsfromtheburgersequation AT urielfrisch suppressingthermalizationandconstructingweaksolutionsintruncatedinviscidequationsofhydrodynamicslessonsfromtheburgersequation AT sergeynazarenko suppressingthermalizationandconstructingweaksolutionsintruncatedinviscidequationsofhydrodynamicslessonsfromtheburgersequation AT nicolasbesse suppressingthermalizationandconstructingweaksolutionsintruncatedinviscidequationsofhydrodynamicslessonsfromtheburgersequation AT samriddhisankarray suppressingthermalizationandconstructingweaksolutionsintruncatedinviscidequationsofhydrodynamicslessonsfromtheburgersequation |