An Unsupervised Multi-Dimensional Representation Learning Model for Short-Term Electrical Load Forecasting

The intelligent electrical power system is a comprehensive symmetrical system that controls the power supply and power consumption. As a basis for intelligent power supply control, load demand forecasting in power system operation management has attracted considerable research attention in energy ma...

Full description

Bibliographic Details
Main Authors: Weihua Bai, Jiaxian Zhu, Jialing Zhao, Wenwei Cai, Keqin Li
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/10/1999
Description
Summary:The intelligent electrical power system is a comprehensive symmetrical system that controls the power supply and power consumption. As a basis for intelligent power supply control, load demand forecasting in power system operation management has attracted considerable research attention in energy management. In this study, we proposed a novel unsupervised multi-dimensional feature learning forecasting model, named MultiDBN-T, based on a deep belief network and transformer encoder to accurately forecast short-term power load demand and implement power generation planning and scheduling. In the model, the first layer (pre-DBN), based on a deep belief network, was designed to perform unsupervised multi-feature extraction feature learning on the data, and strongly coupled features between multiple independent observable variables were obtained. Next, the encoder layer (D-TEncoder), based on multi-head self-attention, was used to learn the coupled features between various locations, times, or time periods in historical data. The feature embedding of the original multivariate data was performed after the hidden variable relationship was determined. Finally, short-term power load forecasting was conducted. Experimental comparison and analysis of various sequence learning algorithms revealed that the forecasting results of MultiDBN-T were the best, and its mean absolute percentage error and root mean square error were improved by more than 40% on average compared with other algorithms. The effectiveness and accuracy of the model were experimentally verified.
ISSN:2073-8994