IKCa Channels Are a Critical Determinant of the Slow AHP in CA1 Pyramidal Neurons

Control over the frequency and pattern of neuronal spike discharge depends on Ca2+-gated K+ channels that reduce cell excitability by hyperpolarizing the membrane potential. The Ca2+-dependent slow afterhyperpolarization (sAHP) is one of the most prominent inhibitory responses in the brain, with sAH...

Full description

Bibliographic Details
Main Authors: Brian King, Arsalan P. Rizwan, Hadhimulya Asmara, Norman C. Heath, Jordan D.T. Engbers, Steven Dykstra, Theodore M. Bartoletti, Shahid Hameed, Gerald W. Zamponi, Ray W. Turner
Format: Article
Language:English
Published: Elsevier 2015-04-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124715002958
Description
Summary:Control over the frequency and pattern of neuronal spike discharge depends on Ca2+-gated K+ channels that reduce cell excitability by hyperpolarizing the membrane potential. The Ca2+-dependent slow afterhyperpolarization (sAHP) is one of the most prominent inhibitory responses in the brain, with sAHP amplitude linked to a host of circuit and behavioral functions, yet the channel that underlies the sAHP has defied identification for decades. Here, we show that intermediate-conductance Ca2+-dependent K+ (IKCa) channels underlie the sAHP generated by trains of synaptic input or postsynaptic stimuli in CA1 hippocampal pyramidal cells. These findings are significant in providing a molecular identity for the sAHP of central neurons that will identify pharmacological tools capable of potentially modifying the several behavioral or disease states associated with the sAHP.
ISSN:2211-1247