Improved Interpolation Inequalities and Stability

For exponents in the subcritical range, we revisit some optimal interpolation inequalities on the sphere with carré du champ methods and use the remainder terms to produce improved inequalities. The method provides us with lower estimates of the optimal constants in the symmetry breaking range and s...

Full description

Bibliographic Details
Main Authors: Dolbeault Jean, Esteban Maria J.
Format: Article
Language:English
Published: De Gruyter 2020-05-01
Series:Advanced Nonlinear Studies
Subjects:
Online Access:https://doi.org/10.1515/ans-2020-2080
_version_ 1817997008033546240
author Dolbeault Jean
Esteban Maria J.
author_facet Dolbeault Jean
Esteban Maria J.
author_sort Dolbeault Jean
collection DOAJ
description For exponents in the subcritical range, we revisit some optimal interpolation inequalities on the sphere with carré du champ methods and use the remainder terms to produce improved inequalities. The method provides us with lower estimates of the optimal constants in the symmetry breaking range and stability estimates for the optimal functions. Some of these results can be reformulated in the Euclidean space using the stereographic projection.
first_indexed 2024-04-14T02:31:52Z
format Article
id doaj.art-2b90235999ca48a3aa9e3e579e630bfa
institution Directory Open Access Journal
issn 1536-1365
2169-0375
language English
last_indexed 2024-04-14T02:31:52Z
publishDate 2020-05-01
publisher De Gruyter
record_format Article
series Advanced Nonlinear Studies
spelling doaj.art-2b90235999ca48a3aa9e3e579e630bfa2022-12-22T02:17:39ZengDe GruyterAdvanced Nonlinear Studies1536-13652169-03752020-05-0120227729110.1515/ans-2020-2080Improved Interpolation Inequalities and StabilityDolbeault Jean0Esteban Maria J.1CEREMADE (CNRS UMR no 7534), PSL University, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775Paris16, FranceCEREMADE (CNRS UMR no 7534), PSL University, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775Paris16, FranceFor exponents in the subcritical range, we revisit some optimal interpolation inequalities on the sphere with carré du champ methods and use the remainder terms to produce improved inequalities. The method provides us with lower estimates of the optimal constants in the symmetry breaking range and stability estimates for the optimal functions. Some of these results can be reformulated in the Euclidean space using the stereographic projection.https://doi.org/10.1515/ans-2020-2080interpolationgagliardo–nirenberg inequalitiessobolev inequalitylogarithmic sobolev inequalitypoincaré inequalityheat equationnonlinear diffusion26d10 46e35 58e35
spellingShingle Dolbeault Jean
Esteban Maria J.
Improved Interpolation Inequalities and Stability
Advanced Nonlinear Studies
interpolation
gagliardo–nirenberg inequalities
sobolev inequality
logarithmic sobolev inequality
poincaré inequality
heat equation
nonlinear diffusion
26d10
46e35
58e35
title Improved Interpolation Inequalities and Stability
title_full Improved Interpolation Inequalities and Stability
title_fullStr Improved Interpolation Inequalities and Stability
title_full_unstemmed Improved Interpolation Inequalities and Stability
title_short Improved Interpolation Inequalities and Stability
title_sort improved interpolation inequalities and stability
topic interpolation
gagliardo–nirenberg inequalities
sobolev inequality
logarithmic sobolev inequality
poincaré inequality
heat equation
nonlinear diffusion
26d10
46e35
58e35
url https://doi.org/10.1515/ans-2020-2080
work_keys_str_mv AT dolbeaultjean improvedinterpolationinequalitiesandstability
AT estebanmariaj improvedinterpolationinequalitiesandstability