Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger operators

In this paper it is studied the Hoelder-continuity of solutions of a linear degenerate elliptic equation of the form<br />        (∗)         <em> -Sum_ {i, j =1}^n    (a_{i j} u_{x_i} )_{x_j} + V u = 0</em>.<br />It is proved that the solutions of (∗) are Hoelder-continuous...

Full description

Bibliographic Details
Main Authors: Carmela Vitanza, Pietro Zamboni
Format: Article
Language:English
Published: Università degli Studi di Catania 1997-11-01
Series:Le Matematiche
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/418
_version_ 1818505429290844160
author Carmela Vitanza
Pietro Zamboni
author_facet Carmela Vitanza
Pietro Zamboni
author_sort Carmela Vitanza
collection DOAJ
description In this paper it is studied the Hoelder-continuity of solutions of a linear degenerate elliptic equation of the form<br />        (∗)         <em> -Sum_ {i, j =1}^n    (a_{i j} u_{x_i} )_{x_j} + V u = 0</em>.<br />It is proved that the solutions of (∗) are Hoelder-continuous if the coefficient V belongs to an appropriate "degenerate" Morrey space. Under some additional assumptions on the weight giving the degeneracy, the previous condition is also necessary.
first_indexed 2024-12-10T21:50:39Z
format Article
id doaj.art-2b9180e790a24c2bac1b299f303c4756
institution Directory Open Access Journal
issn 0373-3505
2037-5298
language English
last_indexed 2024-12-10T21:50:39Z
publishDate 1997-11-01
publisher Università degli Studi di Catania
record_format Article
series Le Matematiche
spelling doaj.art-2b9180e790a24c2bac1b299f303c47562022-12-22T01:32:13ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52981997-11-01522393409390Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger operatorsCarmela VitanzaPietro ZamboniIn this paper it is studied the Hoelder-continuity of solutions of a linear degenerate elliptic equation of the form<br />        (∗)         <em> -Sum_ {i, j =1}^n    (a_{i j} u_{x_i} )_{x_j} + V u = 0</em>.<br />It is proved that the solutions of (∗) are Hoelder-continuous if the coefficient V belongs to an appropriate "degenerate" Morrey space. Under some additional assumptions on the weight giving the degeneracy, the previous condition is also necessary.http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/418
spellingShingle Carmela Vitanza
Pietro Zamboni
Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger operators
Le Matematiche
title Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger operators
title_full Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger operators
title_fullStr Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger operators
title_full_unstemmed Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger operators
title_short Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger operators
title_sort necessary and sufficient conditions for holder continuity of solutions of degenerate schrodinger operators
url http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/418
work_keys_str_mv AT carmelavitanza necessaryandsufficientconditionsforholdercontinuityofsolutionsofdegenerateschrodingeroperators
AT pietrozamboni necessaryandsufficientconditionsforholdercontinuityofsolutionsofdegenerateschrodingeroperators