Convexity of charged operators in CFTs with multiple Abelian symmetries

Abstract Motivated by the Weak Gravity Conjecture in the context of holography in AdS, it has been proposed that operators charged under global symmetries in CFTs, in three dimensions or higher, should satisfy certain convexity properties on their spectrum. A key element of this proposal is the char...

Full description

Bibliographic Details
Main Authors: Eran Palti, Adar Sharon
Format: Article
Language:English
Published: SpringerOpen 2022-09-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP09(2022)078
_version_ 1798036356413259776
author Eran Palti
Adar Sharon
author_facet Eran Palti
Adar Sharon
author_sort Eran Palti
collection DOAJ
description Abstract Motivated by the Weak Gravity Conjecture in the context of holography in AdS, it has been proposed that operators charged under global symmetries in CFTs, in three dimensions or higher, should satisfy certain convexity properties on their spectrum. A key element of this proposal is the charge at which convexity must appear, which was proposed to never be parametrically large. In this paper, we develop this constraint in the context of multiple Abelian global symmetries. We propose the statement that the convex directions in the multi-dimensional charge space should generate a sub-lattice of the total lattice of charged operators, such that the index of this sub-lattice cannot be made parametrically large. In the special case of two-dimensional CFTs, the index can be made parametrically large, which we prove by an explicit example. However, we also prove that in two dimensions there always exist convex directions generating a sub-lattice with an index bounded by the current levels of the global symmetry. Therefore, in two dimensions, the conjecture should be slightly modified to account for the current levels, and then it can be proven. In more than two dimensions, we show that the index of the sub-lattice generated by marginally convex charge vectors associated to BPS operators only, can be made parametrically large. However, we do not find evidence for parametric delay in convexity once all operators are considered.
first_indexed 2024-04-11T21:11:44Z
format Article
id doaj.art-2b9c3ba3bf5d4ea8bdd56a057d450888
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-04-11T21:11:44Z
publishDate 2022-09-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-2b9c3ba3bf5d4ea8bdd56a057d4508882022-12-22T04:02:59ZengSpringerOpenJournal of High Energy Physics1029-84792022-09-012022912210.1007/JHEP09(2022)078Convexity of charged operators in CFTs with multiple Abelian symmetriesEran Palti0Adar Sharon1Department of Physics, Ben-Gurion University of the NegevDepartment of Particle Physics and Astrophysics, Weizmann Institute of ScienceAbstract Motivated by the Weak Gravity Conjecture in the context of holography in AdS, it has been proposed that operators charged under global symmetries in CFTs, in three dimensions or higher, should satisfy certain convexity properties on their spectrum. A key element of this proposal is the charge at which convexity must appear, which was proposed to never be parametrically large. In this paper, we develop this constraint in the context of multiple Abelian global symmetries. We propose the statement that the convex directions in the multi-dimensional charge space should generate a sub-lattice of the total lattice of charged operators, such that the index of this sub-lattice cannot be made parametrically large. In the special case of two-dimensional CFTs, the index can be made parametrically large, which we prove by an explicit example. However, we also prove that in two dimensions there always exist convex directions generating a sub-lattice with an index bounded by the current levels of the global symmetry. Therefore, in two dimensions, the conjecture should be slightly modified to account for the current levels, and then it can be proven. In more than two dimensions, we show that the index of the sub-lattice generated by marginally convex charge vectors associated to BPS operators only, can be made parametrically large. However, we do not find evidence for parametric delay in convexity once all operators are considered.https://doi.org/10.1007/JHEP09(2022)078AdS-CFT CorrespondenceGlobal SymmetriesScale and Conformal Symmetries
spellingShingle Eran Palti
Adar Sharon
Convexity of charged operators in CFTs with multiple Abelian symmetries
Journal of High Energy Physics
AdS-CFT Correspondence
Global Symmetries
Scale and Conformal Symmetries
title Convexity of charged operators in CFTs with multiple Abelian symmetries
title_full Convexity of charged operators in CFTs with multiple Abelian symmetries
title_fullStr Convexity of charged operators in CFTs with multiple Abelian symmetries
title_full_unstemmed Convexity of charged operators in CFTs with multiple Abelian symmetries
title_short Convexity of charged operators in CFTs with multiple Abelian symmetries
title_sort convexity of charged operators in cfts with multiple abelian symmetries
topic AdS-CFT Correspondence
Global Symmetries
Scale and Conformal Symmetries
url https://doi.org/10.1007/JHEP09(2022)078
work_keys_str_mv AT eranpalti convexityofchargedoperatorsincftswithmultipleabeliansymmetries
AT adarsharon convexityofchargedoperatorsincftswithmultipleabeliansymmetries