Coupled elliptic systems depending on the gradient with nonlocal BCs in exterior domains

Abstract We study the existence and multiplicity of positive radial solutions for a coupled elliptic system in exterior domains where the nonlinearities depend on the gradients and the boundary conditions are nonlocal. We use a new cone to establish the existence of solutions by means of fixed point...

Full description

Bibliographic Details
Main Authors: Filomena Cianciaruso, Luigi Muglia, Paolamaria Pietramala
Format: Article
Language:English
Published: SpringerOpen 2020-05-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-020-01384-7
_version_ 1818150662888751104
author Filomena Cianciaruso
Luigi Muglia
Paolamaria Pietramala
author_facet Filomena Cianciaruso
Luigi Muglia
Paolamaria Pietramala
author_sort Filomena Cianciaruso
collection DOAJ
description Abstract We study the existence and multiplicity of positive radial solutions for a coupled elliptic system in exterior domains where the nonlinearities depend on the gradients and the boundary conditions are nonlocal. We use a new cone to establish the existence of solutions by means of fixed point index theory.
first_indexed 2024-12-11T13:26:30Z
format Article
id doaj.art-2bc12feda8e14cd998123211998e54c5
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-11T13:26:30Z
publishDate 2020-05-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-2bc12feda8e14cd998123211998e54c52022-12-22T01:05:30ZengSpringerOpenBoundary Value Problems1687-27702020-05-012020111710.1186/s13661-020-01384-7Coupled elliptic systems depending on the gradient with nonlocal BCs in exterior domainsFilomena Cianciaruso0Luigi Muglia1Paolamaria Pietramala2Dipartimento di Matematica e Informatica, Università della CalabriaDipartimento di Matematica e Informatica, Università della CalabriaDipartimento di Matematica e Informatica, Università della CalabriaAbstract We study the existence and multiplicity of positive radial solutions for a coupled elliptic system in exterior domains where the nonlinearities depend on the gradients and the boundary conditions are nonlocal. We use a new cone to establish the existence of solutions by means of fixed point index theory.http://link.springer.com/article/10.1186/s13661-020-01384-7Elliptic systemDependence on the gradientNonlocal boundary conditionsFixed point indexConePositive solution
spellingShingle Filomena Cianciaruso
Luigi Muglia
Paolamaria Pietramala
Coupled elliptic systems depending on the gradient with nonlocal BCs in exterior domains
Boundary Value Problems
Elliptic system
Dependence on the gradient
Nonlocal boundary conditions
Fixed point index
Cone
Positive solution
title Coupled elliptic systems depending on the gradient with nonlocal BCs in exterior domains
title_full Coupled elliptic systems depending on the gradient with nonlocal BCs in exterior domains
title_fullStr Coupled elliptic systems depending on the gradient with nonlocal BCs in exterior domains
title_full_unstemmed Coupled elliptic systems depending on the gradient with nonlocal BCs in exterior domains
title_short Coupled elliptic systems depending on the gradient with nonlocal BCs in exterior domains
title_sort coupled elliptic systems depending on the gradient with nonlocal bcs in exterior domains
topic Elliptic system
Dependence on the gradient
Nonlocal boundary conditions
Fixed point index
Cone
Positive solution
url http://link.springer.com/article/10.1186/s13661-020-01384-7
work_keys_str_mv AT filomenacianciaruso coupledellipticsystemsdependingonthegradientwithnonlocalbcsinexteriordomains
AT luigimuglia coupledellipticsystemsdependingonthegradientwithnonlocalbcsinexteriordomains
AT paolamariapietramala coupledellipticsystemsdependingonthegradientwithnonlocalbcsinexteriordomains