Pendant and isolated vertices of comaximal graphs of modules

A comaximal graph Γ(M) is an undirected graph with vertex set as the collection of all submodules of a module M and any two vertices A and B are adjacent if and only if A + B = M. We discuss characteristics of pendant vertices in Γ(M). We also observe features of isolated vertices in a special span...

Full description

Bibliographic Details
Main Authors: Kukil Kalpa Rajkhowa, Helen K. Saikia
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2022-12-01
Series:Boletim da Sociedade Paranaense de Matemática
Online Access:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/51488
_version_ 1827767210305650688
author Kukil Kalpa Rajkhowa
Helen K. Saikia
author_facet Kukil Kalpa Rajkhowa
Helen K. Saikia
author_sort Kukil Kalpa Rajkhowa
collection DOAJ
description A comaximal graph Γ(M) is an undirected graph with vertex set as the collection of all submodules of a module M and any two vertices A and B are adjacent if and only if A + B = M. We discuss characteristics of pendant vertices in Γ(M). We also observe features of isolated vertices in a special spanning subgraph in Γ(M).
first_indexed 2024-03-11T11:55:35Z
format Article
id doaj.art-2bcbab85ca44477bb918fd66a5276ef9
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-03-11T11:55:35Z
publishDate 2022-12-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-2bcbab85ca44477bb918fd66a5276ef92023-11-08T19:10:20ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882022-12-014110.5269/bspm.51488Pendant and isolated vertices of comaximal graphs of modulesKukil Kalpa Rajkhowa0Helen K. Saikia1Cotton UniversityGauhati University A comaximal graph Γ(M) is an undirected graph with vertex set as the collection of all submodules of a module M and any two vertices A and B are adjacent if and only if A + B = M. We discuss characteristics of pendant vertices in Γ(M). We also observe features of isolated vertices in a special spanning subgraph in Γ(M). https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/51488
spellingShingle Kukil Kalpa Rajkhowa
Helen K. Saikia
Pendant and isolated vertices of comaximal graphs of modules
Boletim da Sociedade Paranaense de Matemática
title Pendant and isolated vertices of comaximal graphs of modules
title_full Pendant and isolated vertices of comaximal graphs of modules
title_fullStr Pendant and isolated vertices of comaximal graphs of modules
title_full_unstemmed Pendant and isolated vertices of comaximal graphs of modules
title_short Pendant and isolated vertices of comaximal graphs of modules
title_sort pendant and isolated vertices of comaximal graphs of modules
url https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/51488
work_keys_str_mv AT kukilkalparajkhowa pendantandisolatedverticesofcomaximalgraphsofmodules
AT helenksaikia pendantandisolatedverticesofcomaximalgraphsofmodules