Pendant and isolated vertices of comaximal graphs of modules
A comaximal graph Γ(M) is an undirected graph with vertex set as the collection of all submodules of a module M and any two vertices A and B are adjacent if and only if A + B = M. We discuss characteristics of pendant vertices in Γ(M). We also observe features of isolated vertices in a special span...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2022-12-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Online Access: | https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/51488 |
_version_ | 1827767210305650688 |
---|---|
author | Kukil Kalpa Rajkhowa Helen K. Saikia |
author_facet | Kukil Kalpa Rajkhowa Helen K. Saikia |
author_sort | Kukil Kalpa Rajkhowa |
collection | DOAJ |
description |
A comaximal graph Γ(M) is an undirected graph with vertex set as the collection of all submodules of a module M and any two vertices A and B are adjacent if and only if A + B = M. We discuss characteristics of pendant vertices in Γ(M). We also observe features of isolated vertices in a special spanning subgraph in Γ(M).
|
first_indexed | 2024-03-11T11:55:35Z |
format | Article |
id | doaj.art-2bcbab85ca44477bb918fd66a5276ef9 |
institution | Directory Open Access Journal |
issn | 0037-8712 2175-1188 |
language | English |
last_indexed | 2024-03-11T11:55:35Z |
publishDate | 2022-12-01 |
publisher | Sociedade Brasileira de Matemática |
record_format | Article |
series | Boletim da Sociedade Paranaense de Matemática |
spelling | doaj.art-2bcbab85ca44477bb918fd66a5276ef92023-11-08T19:10:20ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882022-12-014110.5269/bspm.51488Pendant and isolated vertices of comaximal graphs of modulesKukil Kalpa Rajkhowa0Helen K. Saikia1Cotton UniversityGauhati University A comaximal graph Γ(M) is an undirected graph with vertex set as the collection of all submodules of a module M and any two vertices A and B are adjacent if and only if A + B = M. We discuss characteristics of pendant vertices in Γ(M). We also observe features of isolated vertices in a special spanning subgraph in Γ(M). https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/51488 |
spellingShingle | Kukil Kalpa Rajkhowa Helen K. Saikia Pendant and isolated vertices of comaximal graphs of modules Boletim da Sociedade Paranaense de Matemática |
title | Pendant and isolated vertices of comaximal graphs of modules |
title_full | Pendant and isolated vertices of comaximal graphs of modules |
title_fullStr | Pendant and isolated vertices of comaximal graphs of modules |
title_full_unstemmed | Pendant and isolated vertices of comaximal graphs of modules |
title_short | Pendant and isolated vertices of comaximal graphs of modules |
title_sort | pendant and isolated vertices of comaximal graphs of modules |
url | https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/51488 |
work_keys_str_mv | AT kukilkalparajkhowa pendantandisolatedverticesofcomaximalgraphsofmodules AT helenksaikia pendantandisolatedverticesofcomaximalgraphsofmodules |