Interaction with a reactive partner improves learning in contrast to passive guidance
Abstract Many tasks such as physical rehabilitation, vehicle co-piloting or surgical training, rely on physical assistance from a partner. While this assistance may be provided by a robotic interface, how to implement the necessary haptic support to help improve performance without impeding learning...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-09-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-022-18617-7 |
_version_ | 1818016728215453696 |
---|---|
author | Ekaterina Ivanova Jonathan Eden Gerolamo Carboni Jörg Krüger Etienne Burdet |
author_facet | Ekaterina Ivanova Jonathan Eden Gerolamo Carboni Jörg Krüger Etienne Burdet |
author_sort | Ekaterina Ivanova |
collection | DOAJ |
description | Abstract Many tasks such as physical rehabilitation, vehicle co-piloting or surgical training, rely on physical assistance from a partner. While this assistance may be provided by a robotic interface, how to implement the necessary haptic support to help improve performance without impeding learning is unclear. In this paper, we study the influence of haptic interaction on the performance and learning of a shared tracking task. We compare in a tracking task the interaction with a human partner, the trajectory guidance traditionally used in training robots, and a robot partner yielding human-like interaction. While trajectory guidance resulted in the best performance during training, it dramatically reduced error variability and hindered learning. In contrast, the reactive human and robot partners did not impede the adaptation and allowed the subjects to learn without modifying their movement patterns. Moreover, interaction with a human partner was the only condition that demonstrated an improvement in retention and transfer learning compared to a subject training alone. These results reveal distinctly different learning behaviour in training with a human compared to trajectory guidance, and similar learning between the robotic partner and human partner. Therefore, for movement assistance and learning, algorithms that react to the user’s motion and change their behaviour accordingly are better suited. |
first_indexed | 2024-04-14T07:17:37Z |
format | Article |
id | doaj.art-2bd0fba66c2245fbad0a15b06f2a15e9 |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-04-14T07:17:37Z |
publishDate | 2022-09-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-2bd0fba66c2245fbad0a15b06f2a15e92022-12-22T02:06:16ZengNature PortfolioScientific Reports2045-23222022-09-0112111010.1038/s41598-022-18617-7Interaction with a reactive partner improves learning in contrast to passive guidanceEkaterina Ivanova0Jonathan Eden1Gerolamo Carboni2Jörg Krüger3Etienne Burdet4Imperial College of Science, Technology and MedicineImperial College of Science, Technology and MedicineImperial College of Science, Technology and MedicineTechnische Universität BerlinImperial College of Science, Technology and MedicineAbstract Many tasks such as physical rehabilitation, vehicle co-piloting or surgical training, rely on physical assistance from a partner. While this assistance may be provided by a robotic interface, how to implement the necessary haptic support to help improve performance without impeding learning is unclear. In this paper, we study the influence of haptic interaction on the performance and learning of a shared tracking task. We compare in a tracking task the interaction with a human partner, the trajectory guidance traditionally used in training robots, and a robot partner yielding human-like interaction. While trajectory guidance resulted in the best performance during training, it dramatically reduced error variability and hindered learning. In contrast, the reactive human and robot partners did not impede the adaptation and allowed the subjects to learn without modifying their movement patterns. Moreover, interaction with a human partner was the only condition that demonstrated an improvement in retention and transfer learning compared to a subject training alone. These results reveal distinctly different learning behaviour in training with a human compared to trajectory guidance, and similar learning between the robotic partner and human partner. Therefore, for movement assistance and learning, algorithms that react to the user’s motion and change their behaviour accordingly are better suited.https://doi.org/10.1038/s41598-022-18617-7 |
spellingShingle | Ekaterina Ivanova Jonathan Eden Gerolamo Carboni Jörg Krüger Etienne Burdet Interaction with a reactive partner improves learning in contrast to passive guidance Scientific Reports |
title | Interaction with a reactive partner improves learning in contrast to passive guidance |
title_full | Interaction with a reactive partner improves learning in contrast to passive guidance |
title_fullStr | Interaction with a reactive partner improves learning in contrast to passive guidance |
title_full_unstemmed | Interaction with a reactive partner improves learning in contrast to passive guidance |
title_short | Interaction with a reactive partner improves learning in contrast to passive guidance |
title_sort | interaction with a reactive partner improves learning in contrast to passive guidance |
url | https://doi.org/10.1038/s41598-022-18617-7 |
work_keys_str_mv | AT ekaterinaivanova interactionwithareactivepartnerimproveslearningincontrasttopassiveguidance AT jonathaneden interactionwithareactivepartnerimproveslearningincontrasttopassiveguidance AT gerolamocarboni interactionwithareactivepartnerimproveslearningincontrasttopassiveguidance AT jorgkruger interactionwithareactivepartnerimproveslearningincontrasttopassiveguidance AT etienneburdet interactionwithareactivepartnerimproveslearningincontrasttopassiveguidance |