Cyclogenesis in the lee of the Atlas Mountains: a factor separation numerical study
The initiation of a deep and severe impact Mediterranean cyclone in the lee of Atlas Mountains is investigated by a series of numerical experiments using the MM5 forecast model. Roles of orography, surface sensible heat flux and an upper-level potential vorticity anomaly are identified using factor...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2006-01-01
|
Series: | Advances in Geosciences |
Online Access: | http://www.adv-geosci.net/7/327/2006/adgeo-7-327-2006.pdf |
Summary: | The initiation of a deep and severe impact Mediterranean cyclone in the lee of Atlas Mountains is investigated by a series of numerical experiments using the MM5 forecast model. Roles of orography, surface sensible heat flux and an upper-level potential vorticity anomaly are identified using factor separation method. Results of model simulations show that orography blocking is responsible for generation of the low-level shallow vortex in the first phase of lee development. Upper-level potential vorticity is a principal ingredient of this event, responsible for a dominant deepening effect in the later stage of lee formation. Analysis of cyclone paths shows that orography tends to keep the cyclone stationary, while upper-level dynamical factors are crucial for advection of the system to the Mediterranean Sea. The most noteworthy influence of surface sensible heat flux is identified as an afternoon destruction of a surface baroclinic zone and associated weaker cyclogenesis. |
---|---|
ISSN: | 1680-7340 1680-7359 |