Generating galaxy clusters mass density maps from mock multiview images via deep learning

Galaxy clusters are composed of dark matter, gas and stars. Their dark matter component, which amounts to around 80% of the total mass, cannot be directly observed but traced by the distribution of diffused gas and galaxy members. In this work, we aim to infer the cluster’s projected total mass dist...

Full description

Bibliographic Details
Main Authors: de Andres Daniel, Cui Weiguang, Yepes Gustavo, De Petris Marco, Aversano Gianmarco, Ferragamo Antonio, De Luca Federico, Muñoz A. Jiménez
Format: Article
Language:English
Published: EDP Sciences 2024-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2024/03/epjconf_mmUniverse2023_00013.pdf
_version_ 1797235239037173760
author de Andres Daniel
Cui Weiguang
Yepes Gustavo
De Petris Marco
Aversano Gianmarco
Ferragamo Antonio
De Luca Federico
Muñoz A. Jiménez
author_facet de Andres Daniel
Cui Weiguang
Yepes Gustavo
De Petris Marco
Aversano Gianmarco
Ferragamo Antonio
De Luca Federico
Muñoz A. Jiménez
author_sort de Andres Daniel
collection DOAJ
description Galaxy clusters are composed of dark matter, gas and stars. Their dark matter component, which amounts to around 80% of the total mass, cannot be directly observed but traced by the distribution of diffused gas and galaxy members. In this work, we aim to infer the cluster’s projected total mass distribution from mock observational data, i.e. stars, Sunyaev-Zeldovich, and X-ray, by training deep learning models. To this end, we have created a multiview images dataset from The Three Hundred simulation that is optimal for training Machine Learning models. We further study deep learning architectures based on the U-Net to account for single-input and multi-input models. We show that the predicted mass distribution agrees well with the true one.
first_indexed 2024-04-24T16:44:47Z
format Article
id doaj.art-2bfa74f145364812a035b67485b41fa3
institution Directory Open Access Journal
issn 2100-014X
language English
last_indexed 2024-04-24T16:44:47Z
publishDate 2024-01-01
publisher EDP Sciences
record_format Article
series EPJ Web of Conferences
spelling doaj.art-2bfa74f145364812a035b67485b41fa32024-03-29T08:31:00ZengEDP SciencesEPJ Web of Conferences2100-014X2024-01-012930001310.1051/epjconf/202429300013epjconf_mmUniverse2023_00013Generating galaxy clusters mass density maps from mock multiview images via deep learningde Andres Daniel0Cui Weiguang1Yepes Gustavo2De Petris Marco3Aversano Gianmarco4Ferragamo Antonio5De Luca Federico6Muñoz A. Jiménez7Departamento de Física Teórica and CIAFF, Modulo 8 Universidad Autónoma de MadridDepartamento de Física Teórica and CIAFF, Modulo 8 Universidad Autónoma de MadridDepartamento de Física Teórica and CIAFF, Modulo 8 Universidad Autónoma de MadridDipartimento di Fisica, Sapienza Universitá di Roma, Piazzale Aldo MoroEURANOVADipartimento di Fisica, Sapienza Universitá di Roma, Piazzale Aldo MoroDipartimento di Fisica, Sapienza Universitá di Roma, Piazzale Aldo MoroDepartamento de Física Teórica and CIAFF, Modulo 8 Universidad Autónoma de MadridGalaxy clusters are composed of dark matter, gas and stars. Their dark matter component, which amounts to around 80% of the total mass, cannot be directly observed but traced by the distribution of diffused gas and galaxy members. In this work, we aim to infer the cluster’s projected total mass distribution from mock observational data, i.e. stars, Sunyaev-Zeldovich, and X-ray, by training deep learning models. To this end, we have created a multiview images dataset from The Three Hundred simulation that is optimal for training Machine Learning models. We further study deep learning architectures based on the U-Net to account for single-input and multi-input models. We show that the predicted mass distribution agrees well with the true one.https://www.epj-conferences.org/articles/epjconf/pdf/2024/03/epjconf_mmUniverse2023_00013.pdf
spellingShingle de Andres Daniel
Cui Weiguang
Yepes Gustavo
De Petris Marco
Aversano Gianmarco
Ferragamo Antonio
De Luca Federico
Muñoz A. Jiménez
Generating galaxy clusters mass density maps from mock multiview images via deep learning
EPJ Web of Conferences
title Generating galaxy clusters mass density maps from mock multiview images via deep learning
title_full Generating galaxy clusters mass density maps from mock multiview images via deep learning
title_fullStr Generating galaxy clusters mass density maps from mock multiview images via deep learning
title_full_unstemmed Generating galaxy clusters mass density maps from mock multiview images via deep learning
title_short Generating galaxy clusters mass density maps from mock multiview images via deep learning
title_sort generating galaxy clusters mass density maps from mock multiview images via deep learning
url https://www.epj-conferences.org/articles/epjconf/pdf/2024/03/epjconf_mmUniverse2023_00013.pdf
work_keys_str_mv AT deandresdaniel generatinggalaxyclustersmassdensitymapsfrommockmultiviewimagesviadeeplearning
AT cuiweiguang generatinggalaxyclustersmassdensitymapsfrommockmultiviewimagesviadeeplearning
AT yepesgustavo generatinggalaxyclustersmassdensitymapsfrommockmultiviewimagesviadeeplearning
AT depetrismarco generatinggalaxyclustersmassdensitymapsfrommockmultiviewimagesviadeeplearning
AT aversanogianmarco generatinggalaxyclustersmassdensitymapsfrommockmultiviewimagesviadeeplearning
AT ferragamoantonio generatinggalaxyclustersmassdensitymapsfrommockmultiviewimagesviadeeplearning
AT delucafederico generatinggalaxyclustersmassdensitymapsfrommockmultiviewimagesviadeeplearning
AT munozajimenez generatinggalaxyclustersmassdensitymapsfrommockmultiviewimagesviadeeplearning