Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section

In this manuscript, static and free vibration responses on Euler–Bernoulli beams with a Koch snowflake cross-section are studied. By applying the finite element method, the transversal displacement in static load condition, natural frequencies, and vibration modes are solved and validated using Matl...

Full description

Bibliographic Details
Main Authors: Didier Samayoa, Helvio Mollinedo, José Alfredo Jiménez-Bernal, Claudia del Carmen Gutiérrez-Torres
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/2/153
Description
Summary:In this manuscript, static and free vibration responses on Euler–Bernoulli beams with a Koch snowflake cross-section are studied. By applying the finite element method, the transversal displacement in static load condition, natural frequencies, and vibration modes are solved and validated using Matlab. For each case presented, the transversal displacement and natural frequency are analyzed as a Hausdorff dimension function. It is found that the maximum displacement increases as the Hausdorff dimension increases, with the relationship <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><msup><mi>k</mi><mrow><mn>0.79</mn><mo form="prefix">ln</mo><msub><mi>d</mi><mi mathvariant="script">H</mi></msub><mo>+</mo><mn>0.37</mn></mrow></msup></mrow></semantics></math></inline-formula>, being <i>k</i> the iteration number of pre-fractal. The natural frequencies increase as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo>∼</mo><msup><mi>M</mi><mrow><mn>2.51</mn></mrow></msup></mrow></semantics></math></inline-formula>, whereas the bending stiffness is expressed as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>I</mi><mo>=</mo><mn>1165.4</mn><mo form="prefix">ln</mo><mo>(</mo><msub><mi>d</mi><mi mathvariant="script">H</mi></msub><mo>+</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Numerical examples are given in order to discuss the mechanical implications.
ISSN:2504-3110