Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section

In this manuscript, static and free vibration responses on Euler–Bernoulli beams with a Koch snowflake cross-section are studied. By applying the finite element method, the transversal displacement in static load condition, natural frequencies, and vibration modes are solved and validated using Matl...

Full description

Bibliographic Details
Main Authors: Didier Samayoa, Helvio Mollinedo, José Alfredo Jiménez-Bernal, Claudia del Carmen Gutiérrez-Torres
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/2/153
_version_ 1827757271747133440
author Didier Samayoa
Helvio Mollinedo
José Alfredo Jiménez-Bernal
Claudia del Carmen Gutiérrez-Torres
author_facet Didier Samayoa
Helvio Mollinedo
José Alfredo Jiménez-Bernal
Claudia del Carmen Gutiérrez-Torres
author_sort Didier Samayoa
collection DOAJ
description In this manuscript, static and free vibration responses on Euler–Bernoulli beams with a Koch snowflake cross-section are studied. By applying the finite element method, the transversal displacement in static load condition, natural frequencies, and vibration modes are solved and validated using Matlab. For each case presented, the transversal displacement and natural frequency are analyzed as a Hausdorff dimension function. It is found that the maximum displacement increases as the Hausdorff dimension increases, with the relationship <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><msup><mi>k</mi><mrow><mn>0.79</mn><mo form="prefix">ln</mo><msub><mi>d</mi><mi mathvariant="script">H</mi></msub><mo>+</mo><mn>0.37</mn></mrow></msup></mrow></semantics></math></inline-formula>, being <i>k</i> the iteration number of pre-fractal. The natural frequencies increase as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo>∼</mo><msup><mi>M</mi><mrow><mn>2.51</mn></mrow></msup></mrow></semantics></math></inline-formula>, whereas the bending stiffness is expressed as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>I</mi><mo>=</mo><mn>1165.4</mn><mo form="prefix">ln</mo><mo>(</mo><msub><mi>d</mi><mi mathvariant="script">H</mi></msub><mo>+</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Numerical examples are given in order to discuss the mechanical implications.
first_indexed 2024-03-11T08:48:37Z
format Article
id doaj.art-2bff406bc9114bebb96ac6dbc1be8943
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-11T08:48:37Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-2bff406bc9114bebb96ac6dbc1be89432023-11-16T20:36:43ZengMDPI AGFractal and Fractional2504-31102023-02-017215310.3390/fractalfract7020153Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross SectionDidier Samayoa0Helvio Mollinedo1José Alfredo Jiménez-Bernal2Claudia del Carmen Gutiérrez-Torres3SEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City 07738, MexicoEngineering Department, Instituto Politécnico Nacional, UPIITA, Av. IPN, No. 2580, Col. La Laguna Ticoman, Gustavo A. Madero, Mexico City 07340, MexicoSEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City 07738, MexicoSEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City 07738, MexicoIn this manuscript, static and free vibration responses on Euler–Bernoulli beams with a Koch snowflake cross-section are studied. By applying the finite element method, the transversal displacement in static load condition, natural frequencies, and vibration modes are solved and validated using Matlab. For each case presented, the transversal displacement and natural frequency are analyzed as a Hausdorff dimension function. It is found that the maximum displacement increases as the Hausdorff dimension increases, with the relationship <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>y</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><msup><mi>k</mi><mrow><mn>0.79</mn><mo form="prefix">ln</mo><msub><mi>d</mi><mi mathvariant="script">H</mi></msub><mo>+</mo><mn>0.37</mn></mrow></msup></mrow></semantics></math></inline-formula>, being <i>k</i> the iteration number of pre-fractal. The natural frequencies increase as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo>∼</mo><msup><mi>M</mi><mrow><mn>2.51</mn></mrow></msup></mrow></semantics></math></inline-formula>, whereas the bending stiffness is expressed as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>I</mi><mo>=</mo><mn>1165.4</mn><mo form="prefix">ln</mo><mo>(</mo><msub><mi>d</mi><mi mathvariant="script">H</mi></msub><mo>+</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Numerical examples are given in order to discuss the mechanical implications.https://www.mdpi.com/2504-3110/7/2/153Euler–Bernoulli beamHausdorff dimensiontransversal displacementvibration modes
spellingShingle Didier Samayoa
Helvio Mollinedo
José Alfredo Jiménez-Bernal
Claudia del Carmen Gutiérrez-Torres
Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section
Fractal and Fractional
Euler–Bernoulli beam
Hausdorff dimension
transversal displacement
vibration modes
title Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section
title_full Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section
title_fullStr Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section
title_full_unstemmed Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section
title_short Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section
title_sort effects of hausdorff dimension on the static and free vibration response of beams with koch snowflake like cross section
topic Euler–Bernoulli beam
Hausdorff dimension
transversal displacement
vibration modes
url https://www.mdpi.com/2504-3110/7/2/153
work_keys_str_mv AT didiersamayoa effectsofhausdorffdimensiononthestaticandfreevibrationresponseofbeamswithkochsnowflakelikecrosssection
AT helviomollinedo effectsofhausdorffdimensiononthestaticandfreevibrationresponseofbeamswithkochsnowflakelikecrosssection
AT josealfredojimenezbernal effectsofhausdorffdimensiononthestaticandfreevibrationresponseofbeamswithkochsnowflakelikecrosssection
AT claudiadelcarmengutierreztorres effectsofhausdorffdimensiononthestaticandfreevibrationresponseofbeamswithkochsnowflakelikecrosssection