Bioconcentration and biotransformation of organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpio)

Understanding the bioaccumulation and biotransformation of xenobiotic compounds is critical for evaluating their fate and potential toxicity in vivo. In the present study, the tissue specific accumulation and depuration of seven organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpi...

Full description

Bibliographic Details
Main Authors: Bin Tang, Giulia Poma, Michiel Bastiaensen, Shan-Shan Yin, Xiao-Jun Luo, Bi-Xian Mai, Adrian Covaci
Format: Article
Language:English
Published: Elsevier 2019-05-01
Series:Environment International
Online Access:http://www.sciencedirect.com/science/article/pii/S0160412019300613
Description
Summary:Understanding the bioaccumulation and biotransformation of xenobiotic compounds is critical for evaluating their fate and potential toxicity in vivo. In the present study, the tissue specific accumulation and depuration of seven organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpio) were investigated after exposing the fish to an environmental relevant level of PFRs. The log Kow of PFRs was significantly negatively correlated to the percentages of individual PFRs to the total PFRs in serum (p < 0.04), whereas significantly positive correlations were observed in all other tissues (p < 0.02). Significant correlations (p < 0.01) between the log Kow of PFRs and their log bioconcentration factor (BCFww) were also found in all investigated tissues except for serum. This suggests that the hydrophobicity of PFRs played a significant role in the distribution and body compartment accumulation of PFRs in common carp. The bioaccumulation potential of PFRs in serum was different from the other tissues, probably due to its specific properties. Dialkyl and/or diaryl phosphate esters (DAP) and hydroxylated PFRs (HO-PFRs) were quantified as the major metabolites. Their levels in liver and intestine were significantly higher than in other tissues. Biotransformation processes also played a crucial role in the accumulation of PFRs in fish. Our results provide critical information for further understanding the bioconcentration, tissue distribution and metabolism of PFRs in fish. Keywords: Organophosphorus flame retardants, Tissue-specific bioconcentration, Metabolites, Common carp
ISSN:0160-4120