Transport Properties of Film and Bulk Sr<sub>0.98</sub>Zr<sub>0.95</sub>Y<sub>0.05</sub>O<sub>3−δ</sub> Membranes
In electrode-supported solid oxide fuel cells (SOFCs) with a thin electrolyte, the electrolyte performance can be affected by its interaction with the electrode, therefore, it is particularly important to study the charge transport properties of thin electrode-supported electrolytes. The transport n...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/10/7/2229 |
_version_ | 1818499513265946624 |
---|---|
author | Adelya Khaliullina Liliya Dunyushkina Alexander Pankratov |
author_facet | Adelya Khaliullina Liliya Dunyushkina Alexander Pankratov |
author_sort | Adelya Khaliullina |
collection | DOAJ |
description | In electrode-supported solid oxide fuel cells (SOFCs) with a thin electrolyte, the electrolyte performance can be affected by its interaction with the electrode, therefore, it is particularly important to study the charge transport properties of thin electrode-supported electrolytes. The transport numbers of charged species in Ni-cermet supported Sr<sub>0.98</sub>Zr<sub>0.95</sub>Y<sub>0.05</sub>O<sub>3−δ</sub> (SZY) membranes were studied and compared to those of the bulk membrane. SZY films of 2.5 μm thickness were fabricated by the chemical solution deposition technique. It was shown that the surface layer of the films contained 1.5−2 at.% Ni due to Ni diffusion from the substrate. The Ni-cermet supported 2.5 μm-thick membrane operating in the fuel cell mode was found to possess the effective transport number of oxygen ions of 0.97 at 550 °C, close to that for the bulk SZY membrane (0.99). The high ionic transport numbers indicate that diffusional interaction between SZY films and Ni-cermet supporting electrodes does not entail electrolyte degradation. The relationship between SZY conductivity and oxygen partial pressure was derived from the data on effective conductivity and ionic transport numbers for the membrane operating under two different oxygen partial pressure gradients—in air/argon and air/hydrogen concentration cells. |
first_indexed | 2024-12-10T20:30:33Z |
format | Article |
id | doaj.art-2c1b596f49334b298e22b117e063c013 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-12-10T20:30:33Z |
publishDate | 2020-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-2c1b596f49334b298e22b117e063c0132022-12-22T01:34:42ZengMDPI AGApplied Sciences2076-34172020-03-01107222910.3390/app10072229app10072229Transport Properties of Film and Bulk Sr<sub>0.98</sub>Zr<sub>0.95</sub>Y<sub>0.05</sub>O<sub>3−δ</sub> MembranesAdelya Khaliullina0Liliya Dunyushkina1Alexander Pankratov2Institute of High Temperature Electrochemistry, 620137 Ekaterinburg, RussiaInstitute of High Temperature Electrochemistry, 620137 Ekaterinburg, RussiaInstitute of High Temperature Electrochemistry, 620137 Ekaterinburg, RussiaIn electrode-supported solid oxide fuel cells (SOFCs) with a thin electrolyte, the electrolyte performance can be affected by its interaction with the electrode, therefore, it is particularly important to study the charge transport properties of thin electrode-supported electrolytes. The transport numbers of charged species in Ni-cermet supported Sr<sub>0.98</sub>Zr<sub>0.95</sub>Y<sub>0.05</sub>O<sub>3−δ</sub> (SZY) membranes were studied and compared to those of the bulk membrane. SZY films of 2.5 μm thickness were fabricated by the chemical solution deposition technique. It was shown that the surface layer of the films contained 1.5−2 at.% Ni due to Ni diffusion from the substrate. The Ni-cermet supported 2.5 μm-thick membrane operating in the fuel cell mode was found to possess the effective transport number of oxygen ions of 0.97 at 550 °C, close to that for the bulk SZY membrane (0.99). The high ionic transport numbers indicate that diffusional interaction between SZY films and Ni-cermet supporting electrodes does not entail electrolyte degradation. The relationship between SZY conductivity and oxygen partial pressure was derived from the data on effective conductivity and ionic transport numbers for the membrane operating under two different oxygen partial pressure gradients—in air/argon and air/hydrogen concentration cells.https://www.mdpi.com/2076-3417/10/7/2229y-doped strontium zirconateproton electrolyteionic transport numberproton transport numberthin-film electrolyteconductivity |
spellingShingle | Adelya Khaliullina Liliya Dunyushkina Alexander Pankratov Transport Properties of Film and Bulk Sr<sub>0.98</sub>Zr<sub>0.95</sub>Y<sub>0.05</sub>O<sub>3−δ</sub> Membranes Applied Sciences y-doped strontium zirconate proton electrolyte ionic transport number proton transport number thin-film electrolyte conductivity |
title | Transport Properties of Film and Bulk Sr<sub>0.98</sub>Zr<sub>0.95</sub>Y<sub>0.05</sub>O<sub>3−δ</sub> Membranes |
title_full | Transport Properties of Film and Bulk Sr<sub>0.98</sub>Zr<sub>0.95</sub>Y<sub>0.05</sub>O<sub>3−δ</sub> Membranes |
title_fullStr | Transport Properties of Film and Bulk Sr<sub>0.98</sub>Zr<sub>0.95</sub>Y<sub>0.05</sub>O<sub>3−δ</sub> Membranes |
title_full_unstemmed | Transport Properties of Film and Bulk Sr<sub>0.98</sub>Zr<sub>0.95</sub>Y<sub>0.05</sub>O<sub>3−δ</sub> Membranes |
title_short | Transport Properties of Film and Bulk Sr<sub>0.98</sub>Zr<sub>0.95</sub>Y<sub>0.05</sub>O<sub>3−δ</sub> Membranes |
title_sort | transport properties of film and bulk sr sub 0 98 sub zr sub 0 95 sub y sub 0 05 sub o sub 3 δ sub membranes |
topic | y-doped strontium zirconate proton electrolyte ionic transport number proton transport number thin-film electrolyte conductivity |
url | https://www.mdpi.com/2076-3417/10/7/2229 |
work_keys_str_mv | AT adelyakhaliullina transportpropertiesoffilmandbulksrsub098subzrsub095subysub005subosub3dsubmembranes AT liliyadunyushkina transportpropertiesoffilmandbulksrsub098subzrsub095subysub005subosub3dsubmembranes AT alexanderpankratov transportpropertiesoffilmandbulksrsub098subzrsub095subysub005subosub3dsubmembranes |