Screening of indigenous rhizobacteria as potential biological control against faba bean (Vicia faba L.) gall disease caused by Olpidium viciae

Abstract Background Emerged faba bean gall disease attacks the stem and leaves of the plant and results in complete crop losses. This study was initiated to screen multi-trait rhizobacteria for their antagonistic efficacy under in-vitro and in-vivo conditions against Olpidium viciae to control the e...

Full description

Bibliographic Details
Main Authors: Alemayehu Dugassa, Tesfaye Alemu, Yitbarek Woldehawariat
Format: Article
Language:English
Published: SpringerOpen 2021-11-01
Series:Egyptian Journal of Biological Pest Control
Subjects:
Online Access:https://doi.org/10.1186/s41938-021-00483-6
Description
Summary:Abstract Background Emerged faba bean gall disease attacks the stem and leaves of the plant and results in complete crop losses. This study was initiated to screen multi-trait rhizobacteria for their antagonistic efficacy under in-vitro and in-vivo conditions against Olpidium viciae to control the effect of gall disease on faba bean. Sixty antagonistic isolates were first examined for their morphological, biochemical, and phenotypic traits. Results Pseudomonas fluorescens AAUPF62, P. aeruginosa AAUS31, Bacillus AAUMF42, and Bacillus AAUAm28 showed greater than 68, 62, 57, and 54% suppression of O. viciae in dual culture, volatile metabolites, culture filtrate assay, and detached leaves experiments, respectively. The in-vivo study revealed that early treatment of the crop with P. aeruginosa AAUS31 reduced severity by 63% (in FB-Obse) and 54% (in FB-26869) faba bean varieties. The co-inoculation of P. fluorescens AAUPF62 and P. aeruginosa AAUS31 significantly enhanced the shoot (P = 0.003; mean = 122 cm) and root (P = 0.018; mean = 94 cm) length, increased shoot dry weight by 8 factors (83 g pot −1), and reduced final disease severity by 92% in FB-Obse variety. Conclusions The results revealed that P. fluorescens AAUPF62 and P. aeruginosa AAUS31 strains could be the potential antagonistic agents of gall disease. The use and early treatment of moderately resistant faba bean varieties by co-inoculation of synergistic potential bioagents were recommended.
ISSN:2536-9342