A Novel Method of FACTS-POD Design to More Enhancement of Inter-Area Mode Damping in a Multi-Machine Power System
Background and Objectives: In this paper, a non-typical design method of flexible AC transmission systems power oscillation damping (FACTS-POD) controller is proposed to increase the efficiency of these devices. In all of the introduced FACTS-POD devices (taking IPFC-POD as an example), the suppleme...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Shahid Rajaee Teacher Training University
2017-12-01
|
Series: | Journal of Electrical and Computer Engineering Innovations |
Subjects: | |
Online Access: | https://jecei.sru.ac.ir/article_1102_9bd3f3f514d743b007e9c47d1e017745.pdf |
_version_ | 1811338632794996736 |
---|---|
author | B. Ehsan maleki H. Beiranvand |
author_facet | B. Ehsan maleki H. Beiranvand |
author_sort | B. Ehsan maleki |
collection | DOAJ |
description | Background and Objectives: In this paper, a non-typical design method of flexible AC transmission systems power oscillation damping (FACTS-POD) controller is proposed to increase the efficiency of these devices. In all of the introduced FACTS-POD devices (taking IPFC-POD as an example), the supplementary controller is designed based upon a conventional approach (i.e., based on optimization algorithms) and using a different method can be useful. Methods: In this paper, the graduated modal decomposition control (GMDC) is utilized as a specific strategy for POD controller design. Moreover, the dynamic model of the multi-machine power system with the presence of IPFC devices has been developed. Results: The obtained model is nonlinear; however, it is linearized around the operating point to design the controllers. The overall paper's structure is based upon the two scenarios, in the first of which conventional method for IPFC-POD design has been analyzed there upon the result compared with the introduced method in the second scenario. Finally, to ascertain responsive of the designed controller to load changes and stability of the system, the probabilistic sensitivity indices (PSIs) are investigated over a large set of operating conditions. As a verification, the time-domain simulations on a 10-machine power system emphasize the analysis of dynamic results and their information under the considered conditions. Conclusion: In general, the specific purpose of this paper is to enhance of the dynamic stability of concerned inter-area modes. The proposed method, especially using GRSA, offers better stability characteristics than the results of previous methods. ======================================================================================================Copyrights©2018 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.====================================================================================================== |
first_indexed | 2024-04-13T18:14:01Z |
format | Article |
id | doaj.art-2c3474b6d13c41a5bf1ab9d4fb593787 |
institution | Directory Open Access Journal |
issn | 2322-3952 2345-3044 |
language | English |
last_indexed | 2024-04-13T18:14:01Z |
publishDate | 2017-12-01 |
publisher | Shahid Rajaee Teacher Training University |
record_format | Article |
series | Journal of Electrical and Computer Engineering Innovations |
spelling | doaj.art-2c3474b6d13c41a5bf1ab9d4fb5937872022-12-22T02:35:45ZengShahid Rajaee Teacher Training UniversityJournal of Electrical and Computer Engineering Innovations2322-39522345-30442017-12-01619710910.22061/jecei.2018.11021102A Novel Method of FACTS-POD Design to More Enhancement of Inter-Area Mode Damping in a Multi-Machine Power SystemB. Ehsan maleki0H. Beiranvand1Teacher Training shahid rajaee universityLorestan universityBackground and Objectives: In this paper, a non-typical design method of flexible AC transmission systems power oscillation damping (FACTS-POD) controller is proposed to increase the efficiency of these devices. In all of the introduced FACTS-POD devices (taking IPFC-POD as an example), the supplementary controller is designed based upon a conventional approach (i.e., based on optimization algorithms) and using a different method can be useful. Methods: In this paper, the graduated modal decomposition control (GMDC) is utilized as a specific strategy for POD controller design. Moreover, the dynamic model of the multi-machine power system with the presence of IPFC devices has been developed. Results: The obtained model is nonlinear; however, it is linearized around the operating point to design the controllers. The overall paper's structure is based upon the two scenarios, in the first of which conventional method for IPFC-POD design has been analyzed there upon the result compared with the introduced method in the second scenario. Finally, to ascertain responsive of the designed controller to load changes and stability of the system, the probabilistic sensitivity indices (PSIs) are investigated over a large set of operating conditions. As a verification, the time-domain simulations on a 10-machine power system emphasize the analysis of dynamic results and their information under the considered conditions. Conclusion: In general, the specific purpose of this paper is to enhance of the dynamic stability of concerned inter-area modes. The proposed method, especially using GRSA, offers better stability characteristics than the results of previous methods. ======================================================================================================Copyrights©2018 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.======================================================================================================https://jecei.sru.ac.ir/article_1102_9bd3f3f514d743b007e9c47d1e017745.pdfflexible ac transmission systems power oscillation dampinggraduated modal decomposition control methodprobabilistic sensitivity indices |
spellingShingle | B. Ehsan maleki H. Beiranvand A Novel Method of FACTS-POD Design to More Enhancement of Inter-Area Mode Damping in a Multi-Machine Power System Journal of Electrical and Computer Engineering Innovations flexible ac transmission systems power oscillation damping graduated modal decomposition control method probabilistic sensitivity indices |
title | A Novel Method of FACTS-POD Design to More Enhancement of Inter-Area Mode Damping in a Multi-Machine Power System |
title_full | A Novel Method of FACTS-POD Design to More Enhancement of Inter-Area Mode Damping in a Multi-Machine Power System |
title_fullStr | A Novel Method of FACTS-POD Design to More Enhancement of Inter-Area Mode Damping in a Multi-Machine Power System |
title_full_unstemmed | A Novel Method of FACTS-POD Design to More Enhancement of Inter-Area Mode Damping in a Multi-Machine Power System |
title_short | A Novel Method of FACTS-POD Design to More Enhancement of Inter-Area Mode Damping in a Multi-Machine Power System |
title_sort | novel method of facts pod design to more enhancement of inter area mode damping in a multi machine power system |
topic | flexible ac transmission systems power oscillation damping graduated modal decomposition control method probabilistic sensitivity indices |
url | https://jecei.sru.ac.ir/article_1102_9bd3f3f514d743b007e9c47d1e017745.pdf |
work_keys_str_mv | AT behsanmaleki anovelmethodoffactspoddesigntomoreenhancementofinterareamodedampinginamultimachinepowersystem AT hbeiranvand anovelmethodoffactspoddesigntomoreenhancementofinterareamodedampinginamultimachinepowersystem AT behsanmaleki novelmethodoffactspoddesigntomoreenhancementofinterareamodedampinginamultimachinepowersystem AT hbeiranvand novelmethodoffactspoddesigntomoreenhancementofinterareamodedampinginamultimachinepowersystem |