Optimal Number of Message Transmissions for Probabilistic Guarantee of Latency in the IoT

The Internet of Things (IoT) is now experiencing its first phase of industrialization. Industrial companies are completing proofs of concept and many of them plan to invest in automation, flexibility and quality of production in their plants. Their use of a wireless network is conditioned upon its a...

Full description

Bibliographic Details
Main Authors: Pascale Minet, Yasuyuki Tanaka
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/18/3970
_version_ 1817991693125812224
author Pascale Minet
Yasuyuki Tanaka
author_facet Pascale Minet
Yasuyuki Tanaka
author_sort Pascale Minet
collection DOAJ
description The Internet of Things (IoT) is now experiencing its first phase of industrialization. Industrial companies are completing proofs of concept and many of them plan to invest in automation, flexibility and quality of production in their plants. Their use of a wireless network is conditioned upon its ability to meet three Key Performance Indicators (KPIs), namely a maximum acceptable end-to-end latency <i>L</i>, a targeted end-to-end reliability <i>R</i> and a minimum network lifetime <i>T</i>. The IoT network has to guarantee that at least <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> of messages generated by sensor nodes are delivered to the sink with a latency &#8804;<i>L</i>, whereas the network lifetime is at least equal to <i>T</i>. In this paper, we show how to provide the targeted end-to-end reliability <i>R</i> by means of retransmissions to cope with the unreliability of wireless links. We present two methods to compute the maximum number of transmissions per message required to achieve <i>R</i>. <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>F</mi> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> is very easy to compute, whereas <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>O</mi> <mi>p</mi> <mi>t</mi> </mrow> </semantics> </math> </inline-formula> minimizes the total number of transmissions necessary for a message to reach the sink. <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>F</mi> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>O</mi> <mi>p</mi> <mi>t</mi> </mrow> </semantics> </math> </inline-formula> are then integrated into a TSCH network with a load-based scheduler to evaluate the three KPIs on a generic data-gathering application. We first consider a toy example with eight nodes where the maximum number of transmissions <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mi>T</mi> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics> </math> </inline-formula> is tuned per link and per flow. Finally, a network of 50 nodes, representative of real network deployments, is evaluated assuming <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mi>T</mi> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics> </math> </inline-formula> is fixed. For both TSCH networks, we show that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>O</mi> <mi>p</mi> <mi>t</mi> </mrow> </semantics> </math> </inline-formula> provides a better reliability and a longer lifetime than <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>F</mi> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> </semantics> </math> </inline-formula>, which provides a shorter average end-to-end latency. <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>O</mi> <mi>p</mi> <mi>t</mi> </mrow> </semantics> </math> </inline-formula> provides more predictable end-to-end performances than Kausa, a KPI-aware, state-of-the-art scheduler.
first_indexed 2024-04-14T01:16:38Z
format Article
id doaj.art-2c35c2a968e74f2da43b5e2e912784ba
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-04-14T01:16:38Z
publishDate 2019-09-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-2c35c2a968e74f2da43b5e2e912784ba2022-12-22T02:20:50ZengMDPI AGSensors1424-82202019-09-011918397010.3390/s19183970s19183970Optimal Number of Message Transmissions for Probabilistic Guarantee of Latency in the IoTPascale Minet0Yasuyuki Tanaka1Inria Research Center of Paris, 75012 Paris, FranceInria Research Center of Paris, 75012 Paris, FranceThe Internet of Things (IoT) is now experiencing its first phase of industrialization. Industrial companies are completing proofs of concept and many of them plan to invest in automation, flexibility and quality of production in their plants. Their use of a wireless network is conditioned upon its ability to meet three Key Performance Indicators (KPIs), namely a maximum acceptable end-to-end latency <i>L</i>, a targeted end-to-end reliability <i>R</i> and a minimum network lifetime <i>T</i>. The IoT network has to guarantee that at least <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> of messages generated by sensor nodes are delivered to the sink with a latency &#8804;<i>L</i>, whereas the network lifetime is at least equal to <i>T</i>. In this paper, we show how to provide the targeted end-to-end reliability <i>R</i> by means of retransmissions to cope with the unreliability of wireless links. We present two methods to compute the maximum number of transmissions per message required to achieve <i>R</i>. <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>F</mi> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> is very easy to compute, whereas <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>O</mi> <mi>p</mi> <mi>t</mi> </mrow> </semantics> </math> </inline-formula> minimizes the total number of transmissions necessary for a message to reach the sink. <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>F</mi> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>O</mi> <mi>p</mi> <mi>t</mi> </mrow> </semantics> </math> </inline-formula> are then integrated into a TSCH network with a load-based scheduler to evaluate the three KPIs on a generic data-gathering application. We first consider a toy example with eight nodes where the maximum number of transmissions <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mi>T</mi> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics> </math> </inline-formula> is tuned per link and per flow. Finally, a network of 50 nodes, representative of real network deployments, is evaluated assuming <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mi>T</mi> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics> </math> </inline-formula> is fixed. For both TSCH networks, we show that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>O</mi> <mi>p</mi> <mi>t</mi> </mrow> </semantics> </math> </inline-formula> provides a better reliability and a longer lifetime than <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>F</mi> <mi>a</mi> <mi>i</mi> <mi>r</mi> </mrow> </semantics> </math> </inline-formula>, which provides a shorter average end-to-end latency. <inline-formula> <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>O</mi> <mi>p</mi> <mi>t</mi> </mrow> </semantics> </math> </inline-formula> provides more predictable end-to-end performances than Kausa, a KPI-aware, state-of-the-art scheduler.https://www.mdpi.com/1424-8220/19/18/3970IoTindustrial IoTreliabilityTSCHlatencyschedulingnetwork lifetimeIEEE802.15.4ePDRETXretransmissionprobabilistic guarantee
spellingShingle Pascale Minet
Yasuyuki Tanaka
Optimal Number of Message Transmissions for Probabilistic Guarantee of Latency in the IoT
Sensors
IoT
industrial IoT
reliability
TSCH
latency
scheduling
network lifetime
IEEE802.15.4e
PDR
ETX
retransmission
probabilistic guarantee
title Optimal Number of Message Transmissions for Probabilistic Guarantee of Latency in the IoT
title_full Optimal Number of Message Transmissions for Probabilistic Guarantee of Latency in the IoT
title_fullStr Optimal Number of Message Transmissions for Probabilistic Guarantee of Latency in the IoT
title_full_unstemmed Optimal Number of Message Transmissions for Probabilistic Guarantee of Latency in the IoT
title_short Optimal Number of Message Transmissions for Probabilistic Guarantee of Latency in the IoT
title_sort optimal number of message transmissions for probabilistic guarantee of latency in the iot
topic IoT
industrial IoT
reliability
TSCH
latency
scheduling
network lifetime
IEEE802.15.4e
PDR
ETX
retransmission
probabilistic guarantee
url https://www.mdpi.com/1424-8220/19/18/3970
work_keys_str_mv AT pascaleminet optimalnumberofmessagetransmissionsforprobabilisticguaranteeoflatencyintheiot
AT yasuyukitanaka optimalnumberofmessagetransmissionsforprobabilisticguaranteeoflatencyintheiot