CRL4 antagonizes SCFFbxo7-mediated turnover of cereblon and BK channel to regulate learning and memory.

Intellectual disability (ID), one of the most common human developmental disorders, can be caused by genetic mutations in Cullin 4B (Cul4B) and cereblon (CRBN). CRBN is a substrate receptor for the Cul4A/B-DDB1 ubiquitin ligase (CRL4) and can target voltage- and calcium-activated BK channel for ER r...

Full description

Bibliographic Details
Main Authors: Tianyu Song, Shenghui Liang, Jiye Liu, Tingyue Zhang, Yifei Yin, Chenlu Geng, Shaobing Gao, Yan Feng, Hao Xu, Dongqing Guo, Amanda Roberts, Yuchun Gu, Yong Cang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS Genetics
Online Access:http://europepmc.org/articles/PMC5800687?pdf=render
Description
Summary:Intellectual disability (ID), one of the most common human developmental disorders, can be caused by genetic mutations in Cullin 4B (Cul4B) and cereblon (CRBN). CRBN is a substrate receptor for the Cul4A/B-DDB1 ubiquitin ligase (CRL4) and can target voltage- and calcium-activated BK channel for ER retention. Here we report that ID-associated CRL4CRBN mutations abolish the interaction of the BK channel with CRL4, and redirect the BK channel to the SCFFbxo7 ubiquitin ligase for proteasomal degradation. Glioma cell lines harbouring CRBN mutations record density-dependent decrease of BK currents, which can be restored by blocking Cullin ubiquitin ligase activity. Importantly, mice with neuron-specific deletion of DDB1 or CRBN express reduced BK protein levels in the brain, and exhibit similar impairment in learning and memory, a deficit that can be partially rescued by activating the BK channel. Our results reveal a competitive targeting of the BK channel by two ubiquitin ligases to achieve exquisite control of its stability, and support changes in neuronal excitability as a common pathogenic mechanism underlying CRL4CRBN-associated ID.
ISSN:1553-7390
1553-7404