Some global Sobolev inequalities related to Kolmogorov-type operators
In this note we review a recent result in [17] in collaboration with N. Garofalo, where we establish global versions of Hardy-Littlewood-Sobolev inequalities attached to hypoelliptic equations of Kolmogorov type. The relevant Sobolev spaces are defined through the fractional powers of the operator u...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Bologna
2020-03-01
|
Series: | Bruno Pini Mathematical Analysis Seminar |
Subjects: | |
Online Access: | https://mathematicalanalysis.unibo.it/article/view/10584 |
_version_ | 1818459861044690944 |
---|---|
author | Giulio Tralli |
author_facet | Giulio Tralli |
author_sort | Giulio Tralli |
collection | DOAJ |
description | In this note we review a recent result in [17] in collaboration with N. Garofalo, where we establish global versions of Hardy-Littlewood-Sobolev inequalities attached to hypoelliptic equations of Kolmogorov type. The relevant Sobolev spaces are defined through the fractional powers of the operator under consideration. We outline the main steps of the semigroup approach we adopt. |
first_indexed | 2024-12-14T23:21:04Z |
format | Article |
id | doaj.art-2c4446e10c3943e0a425f9990f8eaf36 |
institution | Directory Open Access Journal |
issn | 2240-2829 |
language | English |
last_indexed | 2024-12-14T23:21:04Z |
publishDate | 2020-03-01 |
publisher | University of Bologna |
record_format | Article |
series | Bruno Pini Mathematical Analysis Seminar |
spelling | doaj.art-2c4446e10c3943e0a425f9990f8eaf362022-12-21T22:43:57ZengUniversity of BolognaBruno Pini Mathematical Analysis Seminar2240-28292020-03-0111114315610.6092/issn.2240-2829/105848898Some global Sobolev inequalities related to Kolmogorov-type operatorsGiulio Tralli0Dipartimento d'Ingegneria Civile e Ambientale (DICEA), Università di Padova, Via Marzolo, 9 - 35131 PadovaIn this note we review a recent result in [17] in collaboration with N. Garofalo, where we establish global versions of Hardy-Littlewood-Sobolev inequalities attached to hypoelliptic equations of Kolmogorov type. The relevant Sobolev spaces are defined through the fractional powers of the operator under consideration. We outline the main steps of the semigroup approach we adopt.https://mathematicalanalysis.unibo.it/article/view/10584global a priori estimateskolmogorov-fokker-planck diffusionfractional powers of hypoelliptic operators |
spellingShingle | Giulio Tralli Some global Sobolev inequalities related to Kolmogorov-type operators Bruno Pini Mathematical Analysis Seminar global a priori estimates kolmogorov-fokker-planck diffusion fractional powers of hypoelliptic operators |
title | Some global Sobolev inequalities related to Kolmogorov-type operators |
title_full | Some global Sobolev inequalities related to Kolmogorov-type operators |
title_fullStr | Some global Sobolev inequalities related to Kolmogorov-type operators |
title_full_unstemmed | Some global Sobolev inequalities related to Kolmogorov-type operators |
title_short | Some global Sobolev inequalities related to Kolmogorov-type operators |
title_sort | some global sobolev inequalities related to kolmogorov type operators |
topic | global a priori estimates kolmogorov-fokker-planck diffusion fractional powers of hypoelliptic operators |
url | https://mathematicalanalysis.unibo.it/article/view/10584 |
work_keys_str_mv | AT giuliotralli someglobalsobolevinequalitiesrelatedtokolmogorovtypeoperators |