Some global Sobolev inequalities related to Kolmogorov-type operators

In this note we review a recent result in [17] in collaboration with N. Garofalo, where we establish global versions of Hardy-Littlewood-Sobolev inequalities attached to hypoelliptic equations of Kolmogorov type. The relevant Sobolev spaces are defined through the fractional powers of the operator u...

Full description

Bibliographic Details
Main Author: Giulio Tralli
Format: Article
Language:English
Published: University of Bologna 2020-03-01
Series:Bruno Pini Mathematical Analysis Seminar
Subjects:
Online Access:https://mathematicalanalysis.unibo.it/article/view/10584
_version_ 1818459861044690944
author Giulio Tralli
author_facet Giulio Tralli
author_sort Giulio Tralli
collection DOAJ
description In this note we review a recent result in [17] in collaboration with N. Garofalo, where we establish global versions of Hardy-Littlewood-Sobolev inequalities attached to hypoelliptic equations of Kolmogorov type. The relevant Sobolev spaces are defined through the fractional powers of the operator under consideration. We outline the main steps of the semigroup approach we adopt.
first_indexed 2024-12-14T23:21:04Z
format Article
id doaj.art-2c4446e10c3943e0a425f9990f8eaf36
institution Directory Open Access Journal
issn 2240-2829
language English
last_indexed 2024-12-14T23:21:04Z
publishDate 2020-03-01
publisher University of Bologna
record_format Article
series Bruno Pini Mathematical Analysis Seminar
spelling doaj.art-2c4446e10c3943e0a425f9990f8eaf362022-12-21T22:43:57ZengUniversity of BolognaBruno Pini Mathematical Analysis Seminar2240-28292020-03-0111114315610.6092/issn.2240-2829/105848898Some global Sobolev inequalities related to Kolmogorov-type operatorsGiulio Tralli0Dipartimento d'Ingegneria Civile e Ambientale (DICEA), Università di Padova, Via Marzolo, 9 - 35131 PadovaIn this note we review a recent result in [17] in collaboration with N. Garofalo, where we establish global versions of Hardy-Littlewood-Sobolev inequalities attached to hypoelliptic equations of Kolmogorov type. The relevant Sobolev spaces are defined through the fractional powers of the operator under consideration. We outline the main steps of the semigroup approach we adopt.https://mathematicalanalysis.unibo.it/article/view/10584global a priori estimateskolmogorov-fokker-planck diffusionfractional powers of hypoelliptic operators
spellingShingle Giulio Tralli
Some global Sobolev inequalities related to Kolmogorov-type operators
Bruno Pini Mathematical Analysis Seminar
global a priori estimates
kolmogorov-fokker-planck diffusion
fractional powers of hypoelliptic operators
title Some global Sobolev inequalities related to Kolmogorov-type operators
title_full Some global Sobolev inequalities related to Kolmogorov-type operators
title_fullStr Some global Sobolev inequalities related to Kolmogorov-type operators
title_full_unstemmed Some global Sobolev inequalities related to Kolmogorov-type operators
title_short Some global Sobolev inequalities related to Kolmogorov-type operators
title_sort some global sobolev inequalities related to kolmogorov type operators
topic global a priori estimates
kolmogorov-fokker-planck diffusion
fractional powers of hypoelliptic operators
url https://mathematicalanalysis.unibo.it/article/view/10584
work_keys_str_mv AT giuliotralli someglobalsobolevinequalitiesrelatedtokolmogorovtypeoperators