A Method for the Simultaneous Suppression of DC Capacitor Fluctuations and Common-Mode Voltage in a Five-Level NPC/H Bridge Inverter

To suppress the direct current (DC) capacitor voltage fluctuations and the common-mode voltage (CMV) in a three-phase, five-level, neutral-point-clamped (NPC)/H-bridge inverter, this paper analyzes the influence of all voltage vectors on the neutral point potential of each phase under different puls...

Full description

Bibliographic Details
Main Authors: Ming Wu, Zhenhao Song, Zhipeng Lv, Kai Zhou, Qi Cui
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/5/779
Description
Summary:To suppress the direct current (DC) capacitor voltage fluctuations and the common-mode voltage (CMV) in a three-phase, five-level, neutral-point-clamped (NPC)/H-bridge inverter, this paper analyzes the influence of all voltage vectors on the neutral point potential of each phase under different pulse mappings in detail with an explanation of the CMV distribution. Then, based on the traditional space vector pulse width modulation (SVPWM) algorithm, a dual-pulse-mapping algorithm is proposed to suppress the DC capacitor fluctuations and the CMV simultaneously. In the algorithm, the reference voltage synthesis selects the voltage vector that has the smallest CMV value as the priority. In addition, the two kinds of pulse mappings that have opposite effects on the neutral point potential are switched to output. At the same time, regulating factors are introduced to adjust the working time of each voltage vector under the two pulse mappings; then, the capacitor voltages can be balanced. Both the simulation and experiment demonstrate the algorithm’s effectiveness.
ISSN:1996-1073