Learning Self-distilled Features for Facial Deepfake Detection Using Visual Foundation Models: General Results and Demographic Analysis
Modern deepfake techniques produce highly realistic false media content with the potential for spreading harmful information, including fake news and incitements to violence. Deepfake detection methods aim to identify and counteract such content by employing machine learning algorithms, focusing ma...
Hlavní autoři: | Yan Martins Braz Gurevitz Cunha, Bruno Rocha Gomes, José Matheus C. Boaro, Daniel de Sousa Moraes, Antonio José Grandson Busson, Julio Cesar Duarte, Sérgio Colcher |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Brazilian Computer Society
2024-07-01
|
Edice: | Journal on Interactive Systems |
Témata: | |
On-line přístup: | https://journals-sol.sbc.org.br/index.php/jis/article/view/4120 |
Podobné jednotky
-
Deepfake technology: Criminal law implications
Autor: Čučilović Irena
Vydáno: (2024-01-01) -
Deepfakes as a threat to a speaker and facial recognition: An overview of tools and attack vectors
Autor: Anton Firc, a další
Vydáno: (2023-04-01) -
Audio deepfakes: A survey
Autor: Zahra Khanjani, a další
Vydáno: (2023-01-01) -
Coexistence of Deepfake Defenses: Addressing the Poisoning Challenge
Autor: Jaewoo Park, a další
Vydáno: (2024-01-01) -
Video and Audio Deepfake Datasets and Open Issues in Deepfake Technology: Being Ahead of the Curve
Autor: Zahid Akhtar, a další
Vydáno: (2024-07-01)