Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic Sites

Summary: Tight regulation of neuronal transport allows for cargo binding and release at specific cellular locations. The mechanisms by which motor proteins are loaded on vesicles and how cargoes are captured at appropriate sites remain unclear. To better understand how KIF1A-driven dense core vesicl...

Full description

Bibliographic Details
Main Authors: Riccardo Stucchi, Gabriela Plucińska, Jessica J.A. Hummel, Eitan E. Zahavi, Irune Guerra San Juan, Oleg Klykov, Richard A. Scheltema, A.F. Maarten Altelaar, Casper C. Hoogenraad
Format: Article
Language:English
Published: Elsevier 2018-07-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124718309987
_version_ 1818303023647031296
author Riccardo Stucchi
Gabriela Plucińska
Jessica J.A. Hummel
Eitan E. Zahavi
Irune Guerra San Juan
Oleg Klykov
Richard A. Scheltema
A.F. Maarten Altelaar
Casper C. Hoogenraad
author_facet Riccardo Stucchi
Gabriela Plucińska
Jessica J.A. Hummel
Eitan E. Zahavi
Irune Guerra San Juan
Oleg Klykov
Richard A. Scheltema
A.F. Maarten Altelaar
Casper C. Hoogenraad
author_sort Riccardo Stucchi
collection DOAJ
description Summary: Tight regulation of neuronal transport allows for cargo binding and release at specific cellular locations. The mechanisms by which motor proteins are loaded on vesicles and how cargoes are captured at appropriate sites remain unclear. To better understand how KIF1A-driven dense core vesicle (DCV) transport is regulated, we identified the KIF1A interactome and focused on three binding partners, the calcium binding protein calmodulin (CaM) and two synaptic scaffolding proteins: liprin-α and TANC2. We showed that calcium, acting via CaM, enhances KIF1A binding to DCVs and increases vesicle motility. In contrast, liprin-α and TANC2 are not part of the KIF1A-cargo complex but capture DCVs at dendritic spines. Furthermore, we found that specific TANC2 mutations—reported in patients with different neuropsychiatric disorders—abolish the interaction with KIF1A. We propose a model in which Ca2+/CaM regulates cargo binding and liprin-α and TANC2 recruit KIF1A-transported vesicles. : Stucchi et al. show that KIF1A-dependent transport is regulated by CaM, liprin-α, and TANC2. KIF1A binding to DCVs is controlled by a Ca2+/CaM molecular mechanism, and KIF1A-driven DCVs are recruited in dendritic spines by the PSD scaffolds liprin-α and TANC2. Keywords: neuron, transport, dendritic spines, synapse, KIF1A, scaffold, calmodulin, calcium, TANC2, liprin-α
first_indexed 2024-12-13T05:48:13Z
format Article
id doaj.art-2c5a6f74399d4c63b3fdd3228da82561
institution Directory Open Access Journal
issn 2211-1247
language English
last_indexed 2024-12-13T05:48:13Z
publishDate 2018-07-01
publisher Elsevier
record_format Article
series Cell Reports
spelling doaj.art-2c5a6f74399d4c63b3fdd3228da825612022-12-21T23:57:37ZengElsevierCell Reports2211-12472018-07-01243685700Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic SitesRiccardo Stucchi0Gabriela Plucińska1Jessica J.A. Hummel2Eitan E. Zahavi3Irune Guerra San Juan4Oleg Klykov5Richard A. Scheltema6A.F. Maarten Altelaar7Casper C. Hoogenraad8Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 Utrecht, the NetherlandsCell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the NetherlandsCell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the NetherlandsCell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the NetherlandsCell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the NetherlandsBiomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 Utrecht, the NetherlandsBiomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 Utrecht, the NetherlandsBiomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 Utrecht, the NetherlandsCell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Corresponding authorSummary: Tight regulation of neuronal transport allows for cargo binding and release at specific cellular locations. The mechanisms by which motor proteins are loaded on vesicles and how cargoes are captured at appropriate sites remain unclear. To better understand how KIF1A-driven dense core vesicle (DCV) transport is regulated, we identified the KIF1A interactome and focused on three binding partners, the calcium binding protein calmodulin (CaM) and two synaptic scaffolding proteins: liprin-α and TANC2. We showed that calcium, acting via CaM, enhances KIF1A binding to DCVs and increases vesicle motility. In contrast, liprin-α and TANC2 are not part of the KIF1A-cargo complex but capture DCVs at dendritic spines. Furthermore, we found that specific TANC2 mutations—reported in patients with different neuropsychiatric disorders—abolish the interaction with KIF1A. We propose a model in which Ca2+/CaM regulates cargo binding and liprin-α and TANC2 recruit KIF1A-transported vesicles. : Stucchi et al. show that KIF1A-dependent transport is regulated by CaM, liprin-α, and TANC2. KIF1A binding to DCVs is controlled by a Ca2+/CaM molecular mechanism, and KIF1A-driven DCVs are recruited in dendritic spines by the PSD scaffolds liprin-α and TANC2. Keywords: neuron, transport, dendritic spines, synapse, KIF1A, scaffold, calmodulin, calcium, TANC2, liprin-αhttp://www.sciencedirect.com/science/article/pii/S2211124718309987
spellingShingle Riccardo Stucchi
Gabriela Plucińska
Jessica J.A. Hummel
Eitan E. Zahavi
Irune Guerra San Juan
Oleg Klykov
Richard A. Scheltema
A.F. Maarten Altelaar
Casper C. Hoogenraad
Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic Sites
Cell Reports
title Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic Sites
title_full Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic Sites
title_fullStr Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic Sites
title_full_unstemmed Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic Sites
title_short Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic Sites
title_sort regulation of kif1a driven dense core vesicle transport ca2 cam controls dcv binding and liprin α tanc2 recruits dcvs to postsynaptic sites
url http://www.sciencedirect.com/science/article/pii/S2211124718309987
work_keys_str_mv AT riccardostucchi regulationofkif1adrivendensecorevesicletransportca2camcontrolsdcvbindingandliprinatanc2recruitsdcvstopostsynapticsites
AT gabrielaplucinska regulationofkif1adrivendensecorevesicletransportca2camcontrolsdcvbindingandliprinatanc2recruitsdcvstopostsynapticsites
AT jessicajahummel regulationofkif1adrivendensecorevesicletransportca2camcontrolsdcvbindingandliprinatanc2recruitsdcvstopostsynapticsites
AT eitanezahavi regulationofkif1adrivendensecorevesicletransportca2camcontrolsdcvbindingandliprinatanc2recruitsdcvstopostsynapticsites
AT iruneguerrasanjuan regulationofkif1adrivendensecorevesicletransportca2camcontrolsdcvbindingandliprinatanc2recruitsdcvstopostsynapticsites
AT olegklykov regulationofkif1adrivendensecorevesicletransportca2camcontrolsdcvbindingandliprinatanc2recruitsdcvstopostsynapticsites
AT richardascheltema regulationofkif1adrivendensecorevesicletransportca2camcontrolsdcvbindingandliprinatanc2recruitsdcvstopostsynapticsites
AT afmaartenaltelaar regulationofkif1adrivendensecorevesicletransportca2camcontrolsdcvbindingandliprinatanc2recruitsdcvstopostsynapticsites
AT casperchoogenraad regulationofkif1adrivendensecorevesicletransportca2camcontrolsdcvbindingandliprinatanc2recruitsdcvstopostsynapticsites