Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method

The melting and crystallization phase transitions in the five-component metallic Au-Ag-Cu-Pd-Pt equiatomic nanosystem were investigated. The complex approach to atomistic modeling is due to the use of alternative methods of computer simulation – the molecular dynamics and Monte Carlo methods. The...

Full description

Bibliographic Details
Main Authors: N.Yu. Sdobnyakov, A.Yu. Kolosov, D.N. Sokolov, K.G. Savina, A.N. Bazulev, S.A. Veresov, S.V. Serov
Format: Article
Language:Russian
Published: Tver State University 2023-12-01
Series:Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов
Subjects:
Online Access:https://physchemaspects.ru/2023/doi-10-26456-pcascnn-2023-15-589/?lang=en
_version_ 1797413963473879040
author N.Yu. Sdobnyakov
A.Yu. Kolosov
D.N. Sokolov
K.G. Savina
A.N. Bazulev
S.A. Veresov
S.V. Serov
author_facet N.Yu. Sdobnyakov
A.Yu. Kolosov
D.N. Sokolov
K.G. Savina
A.N. Bazulev
S.A. Veresov
S.V. Serov
author_sort N.Yu. Sdobnyakov
collection DOAJ
description The melting and crystallization phase transitions in the five-component metallic Au-Ag-Cu-Pd-Pt equiatomic nanosystem were investigated. The complex approach to atomistic modeling is due to the use of alternative methods of computer simulation – the molecular dynamics and Monte Carlo methods. The interatomic interactions were described by the tight-binding potential. According to the results of a series of computer experiments, it was established that five-component nanoparticles of equiatomic composition can form crystalline phases during cooling. Melting and crystallization temperatures for the investigated five-component nanoparticles were determined. The values obtained by alternative methods are in good agreement. For five-component nanoparticles, the concept of fixing the temperatures corresponding to the beginning and end of the phase transition process is confirmed. The metals that make up five-component nanoparticles, the atoms of which in the process of crystallization form the central part of the nanoparticle (core) and the peripheral regions, including the surface of the nanoparticle, are determined.
first_indexed 2024-03-09T05:26:01Z
format Article
id doaj.art-2c65074bf8774c1f8d6e1dccffabdf3a
institution Directory Open Access Journal
issn 2226-4442
2658-4360
language Russian
last_indexed 2024-03-09T05:26:01Z
publishDate 2023-12-01
publisher Tver State University
record_format Article
series Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов
spelling doaj.art-2c65074bf8774c1f8d6e1dccffabdf3a2023-12-03T12:36:53ZrusTver State UniversityФизико-химические аспекты изучения кластеров, наноструктур и наноматериалов2226-44422658-43602023-12-011558960110.26456/pcascnn/2023.15.589Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo methodN.Yu. Sdobnyakov0A.Yu. Kolosov1D.N. Sokolov2K.G. Savina3A.N. Bazulev4S.A. Veresov5S.V. Serov6Tver State University, Tver, RussiaTver State University, Tver, RussiaTver State University, Tver, RussiaTver State University, Tver, RussiaTver State University, Tver, RussiaTver State University, Tver, RussiaTver State University, Tver, RussiaThe melting and crystallization phase transitions in the five-component metallic Au-Ag-Cu-Pd-Pt equiatomic nanosystem were investigated. The complex approach to atomistic modeling is due to the use of alternative methods of computer simulation – the molecular dynamics and Monte Carlo methods. The interatomic interactions were described by the tight-binding potential. According to the results of a series of computer experiments, it was established that five-component nanoparticles of equiatomic composition can form crystalline phases during cooling. Melting and crystallization temperatures for the investigated five-component nanoparticles were determined. The values obtained by alternative methods are in good agreement. For five-component nanoparticles, the concept of fixing the temperatures corresponding to the beginning and end of the phase transition process is confirmed. The metals that make up five-component nanoparticles, the atoms of which in the process of crystallization form the central part of the nanoparticle (core) and the peripheral regions, including the surface of the nanoparticle, are determined. https://physchemaspects.ru/2023/doi-10-26456-pcascnn-2023-15-589/?lang=enmolecular dynamics methodmonte carlo methodtight binding potentialfive-component nanoparticlesstructure formationmelting pointcrystallization temperature
spellingShingle N.Yu. Sdobnyakov
A.Yu. Kolosov
D.N. Sokolov
K.G. Savina
A.N. Bazulev
S.A. Veresov
S.V. Serov
Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method
Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов
molecular dynamics method
monte carlo method
tight binding potential
five-component nanoparticles
structure formation
melting point
crystallization temperature
title Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method
title_full Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method
title_fullStr Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method
title_full_unstemmed Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method
title_short Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method
title_sort complex approach to the simulation of melting and crystallization in five component metallic nanoparticles molecular dynamics and the monte carlo method
topic molecular dynamics method
monte carlo method
tight binding potential
five-component nanoparticles
structure formation
melting point
crystallization temperature
url https://physchemaspects.ru/2023/doi-10-26456-pcascnn-2023-15-589/?lang=en
work_keys_str_mv AT nyusdobnyakov complexapproachtothesimulationofmeltingandcrystallizationinfivecomponentmetallicnanoparticlesmoleculardynamicsandthemontecarlomethod
AT ayukolosov complexapproachtothesimulationofmeltingandcrystallizationinfivecomponentmetallicnanoparticlesmoleculardynamicsandthemontecarlomethod
AT dnsokolov complexapproachtothesimulationofmeltingandcrystallizationinfivecomponentmetallicnanoparticlesmoleculardynamicsandthemontecarlomethod
AT kgsavina complexapproachtothesimulationofmeltingandcrystallizationinfivecomponentmetallicnanoparticlesmoleculardynamicsandthemontecarlomethod
AT anbazulev complexapproachtothesimulationofmeltingandcrystallizationinfivecomponentmetallicnanoparticlesmoleculardynamicsandthemontecarlomethod
AT saveresov complexapproachtothesimulationofmeltingandcrystallizationinfivecomponentmetallicnanoparticlesmoleculardynamicsandthemontecarlomethod
AT svserov complexapproachtothesimulationofmeltingandcrystallizationinfivecomponentmetallicnanoparticlesmoleculardynamicsandthemontecarlomethod