A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells

Solar energy is used worldwide to alleviate the daily increasing demands for electric power. Photovoltaic (PV) cells, which are used to convert solar energy into electricity, can be represented as equivalent circuit models, in which a series of electrical parameters must be identified in order to de...

Full description

Bibliographic Details
Main Authors: Arturo Valdivia-González, Daniel Zaldívar, Erik Cuevas, Marco Pérez-Cisneros, Fernando Fausto, Adrián González
Format: Article
Language:English
Published: MDPI AG 2017-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/10/7/1052
_version_ 1797999047055769600
author Arturo Valdivia-González
Daniel Zaldívar
Erik Cuevas
Marco Pérez-Cisneros
Fernando Fausto
Adrián González
author_facet Arturo Valdivia-González
Daniel Zaldívar
Erik Cuevas
Marco Pérez-Cisneros
Fernando Fausto
Adrián González
author_sort Arturo Valdivia-González
collection DOAJ
description Solar energy is used worldwide to alleviate the daily increasing demands for electric power. Photovoltaic (PV) cells, which are used to convert solar energy into electricity, can be represented as equivalent circuit models, in which a series of electrical parameters must be identified in order to determine their operating characteristics under different test conditions. Intelligent approaches, like those based in population-based optimization algorithms like Particle Swarm Optimization (PSO), Genetic Algorithms (GAs), and Simulated Annealing (SA), have been demonstrated to be powerful methods for the accurate identification of such parameters. Recently, chaos theory have been highlighted as a promising alternative to increase the performance of such approaches; as a result, several chaos-based optimization methods have been devised to solve many different and complex engineering problems. In this paper, the Chaotic Gravitational Search Algorithm (CGSA) is proposed to solve the problem of accurate PV cell parameter estimation. To prove the feasibility of the proposed approach, a series of comparative experiments against other similar parameters extraction methods were performed. As shown by our experimental results, our proposed approach outperforms all other methods compared in this work, and proves to be an excellent alternative to tackle the challenging problem of solar cell parameters identification.
first_indexed 2024-04-11T10:58:26Z
format Article
id doaj.art-2c7fc05f40314140a52bc8b11d5df186
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-04-11T10:58:26Z
publishDate 2017-07-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-2c7fc05f40314140a52bc8b11d5df1862022-12-22T04:28:41ZengMDPI AGEnergies1996-10732017-07-01107105210.3390/en10071052en10071052A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic CellsArturo Valdivia-González0Daniel Zaldívar1Erik Cuevas2Marco Pérez-Cisneros3Fernando Fausto4Adrián González5Departamento de Electrónica, Universidad de Guadalajara, CUCEI Av. Revolución 1500, 44430 Guadalajara, MexicoDepartamento de Electrónica, Universidad de Guadalajara, CUCEI Av. Revolución 1500, 44430 Guadalajara, MexicoDepartamento de Electrónica, Universidad de Guadalajara, CUCEI Av. Revolución 1500, 44430 Guadalajara, MexicoDepartamento de Electrónica, Universidad de Guadalajara, CUCEI Av. Revolución 1500, 44430 Guadalajara, MexicoDepartamento de Electrónica, Universidad de Guadalajara, CUCEI Av. Revolución 1500, 44430 Guadalajara, MexicoDepartamento de Electrónica, Universidad de Guadalajara, CUCEI Av. Revolución 1500, 44430 Guadalajara, MexicoSolar energy is used worldwide to alleviate the daily increasing demands for electric power. Photovoltaic (PV) cells, which are used to convert solar energy into electricity, can be represented as equivalent circuit models, in which a series of electrical parameters must be identified in order to determine their operating characteristics under different test conditions. Intelligent approaches, like those based in population-based optimization algorithms like Particle Swarm Optimization (PSO), Genetic Algorithms (GAs), and Simulated Annealing (SA), have been demonstrated to be powerful methods for the accurate identification of such parameters. Recently, chaos theory have been highlighted as a promising alternative to increase the performance of such approaches; as a result, several chaos-based optimization methods have been devised to solve many different and complex engineering problems. In this paper, the Chaotic Gravitational Search Algorithm (CGSA) is proposed to solve the problem of accurate PV cell parameter estimation. To prove the feasibility of the proposed approach, a series of comparative experiments against other similar parameters extraction methods were performed. As shown by our experimental results, our proposed approach outperforms all other methods compared in this work, and proves to be an excellent alternative to tackle the challenging problem of solar cell parameters identification.https://www.mdpi.com/1996-1073/10/7/1052solar cellparameters identificationchaotic gravitational search algorithmpopulation-based algorithm
spellingShingle Arturo Valdivia-González
Daniel Zaldívar
Erik Cuevas
Marco Pérez-Cisneros
Fernando Fausto
Adrián González
A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells
Energies
solar cell
parameters identification
chaotic gravitational search algorithm
population-based algorithm
title A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells
title_full A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells
title_fullStr A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells
title_full_unstemmed A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells
title_short A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells
title_sort chaos embedded gravitational search algorithm for the identification of electrical parameters of photovoltaic cells
topic solar cell
parameters identification
chaotic gravitational search algorithm
population-based algorithm
url https://www.mdpi.com/1996-1073/10/7/1052
work_keys_str_mv AT arturovaldiviagonzalez achaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells
AT danielzaldivar achaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells
AT erikcuevas achaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells
AT marcoperezcisneros achaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells
AT fernandofausto achaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells
AT adriangonzalez achaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells
AT arturovaldiviagonzalez chaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells
AT danielzaldivar chaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells
AT erikcuevas chaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells
AT marcoperezcisneros chaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells
AT fernandofausto chaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells
AT adriangonzalez chaosembeddedgravitationalsearchalgorithmfortheidentificationofelectricalparametersofphotovoltaiccells