Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras

Let $ \mathcal{A} $ be a factor von Neumann algebra acting on a complex Hilbert space $ H $ with dim $ \mathcal{A} > 1 $. We prove that if a map $ \delta: \mathcal{A}\rightarrow \mathcal{A} $ satisfies $ \delta([[A, B]_{\ast}, C]_{\ast}) = [[\delta(A), B]_{\ast}, C]_{\ast}+[[A, \delta(B)]_{\a...

Full description

Bibliographic Details
Main Authors: Liang Kong, Chao Li
Format: Article
Language:English
Published: AIMS Press 2022-05-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2022771?viewType=HTML
_version_ 1811240126137761792
author Liang Kong
Chao Li
author_facet Liang Kong
Chao Li
author_sort Liang Kong
collection DOAJ
description Let $ \mathcal{A} $ be a factor von Neumann algebra acting on a complex Hilbert space $ H $ with dim $ \mathcal{A} > 1 $. We prove that if a map $ \delta: \mathcal{A}\rightarrow \mathcal{A} $ satisfies $ \delta([[A, B]_{\ast}, C]_{\ast}) = [[\delta(A), B]_{\ast}, C]_{\ast}+[[A, \delta(B)]_{\ast}, C]_{\ast} +[[A, B]_{\ast}, \delta(C)]_{\ast} $ for any $ A, B, C\in \mathcal{A} $ with $ A^{\ast}B^{\ast}C = 0 $, then $ \delta $ is an additive $ \ast $-derivation.
first_indexed 2024-04-12T13:14:59Z
format Article
id doaj.art-2c8108fa3eb24137aa66b1b787f05e86
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-12T13:14:59Z
publishDate 2022-05-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-2c8108fa3eb24137aa66b1b787f05e862022-12-22T03:31:44ZengAIMS PressAIMS Mathematics2473-69882022-05-0178139631397610.3934/math.2022771Non-global nonlinear skew Lie triple derivations on factor von Neumann algebrasLiang Kong 0Chao Li 1Institute of Applied Mathematics, Shangluo University, Shangluo 726000, ChinaInstitute of Applied Mathematics, Shangluo University, Shangluo 726000, ChinaLet $ \mathcal{A} $ be a factor von Neumann algebra acting on a complex Hilbert space $ H $ with dim $ \mathcal{A} > 1 $. We prove that if a map $ \delta: \mathcal{A}\rightarrow \mathcal{A} $ satisfies $ \delta([[A, B]_{\ast}, C]_{\ast}) = [[\delta(A), B]_{\ast}, C]_{\ast}+[[A, \delta(B)]_{\ast}, C]_{\ast} +[[A, B]_{\ast}, \delta(C)]_{\ast} $ for any $ A, B, C\in \mathcal{A} $ with $ A^{\ast}B^{\ast}C = 0 $, then $ \delta $ is an additive $ \ast $-derivation.https://www.aimspress.com/article/doi/10.3934/math.2022771?viewType=HTMLnon-global nonlinear skew lie triple derivation∗-derivationfactor von neumann algebra
spellingShingle Liang Kong
Chao Li
Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras
AIMS Mathematics
non-global nonlinear skew lie triple derivation
∗-derivation
factor von neumann algebra
title Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras
title_full Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras
title_fullStr Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras
title_full_unstemmed Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras
title_short Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras
title_sort non global nonlinear skew lie triple derivations on factor von neumann algebras
topic non-global nonlinear skew lie triple derivation
∗-derivation
factor von neumann algebra
url https://www.aimspress.com/article/doi/10.3934/math.2022771?viewType=HTML
work_keys_str_mv AT liangkong nonglobalnonlinearskewlietriplederivationsonfactorvonneumannalgebras
AT chaoli nonglobalnonlinearskewlietriplederivationsonfactorvonneumannalgebras