Non-global nonlinear skew Lie triple derivations on factor von Neumann algebras
Let $ \mathcal{A} $ be a factor von Neumann algebra acting on a complex Hilbert space $ H $ with dim $ \mathcal{A} > 1 $. We prove that if a map $ \delta: \mathcal{A}\rightarrow \mathcal{A} $ satisfies $ \delta([[A, B]_{\ast}, C]_{\ast}) = [[\delta(A), B]_{\ast}, C]_{\ast}+[[A, \delta(B)]_{\a...
Main Authors: | Liang Kong, Chao Li |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2022-05-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.2022771?viewType=HTML |
Similar Items
-
Nonlinear Skew Lie-Type Derivations on ∗-Algebra
by: Md Arshad Madni, et al.
Published: (2023-09-01) -
Linear maps on von Neumann algebras acting as Lie type derivation via local actions
by: Mohd Arif Raza, et al.
Published: (2021-06-01) -
Characterizations of local Lie derivations on von Neumann algebras
by: Guangyu An, et al.
Published: (2022-02-01) -
Maps on $ C^\ast $-algebras are skew Lie triple derivations or homomorphisms at one point
by: Zhonghua Wang, et al.
Published: (2023-09-01) -
Characterization of Lie-Type Higher Derivations of von Neumann Algebras with Local Actions
by: Ab Hamid Kawa, et al.
Published: (2023-11-01)