Ground-Based Radar Detection for High-Speed Maneuvering Target via Fast Discrete Chirp-Fourier Transform
Detection of high-speed maneuvering targets has attracted a great deal of attention recently. There are two main problems to be solved: improving detection ability under the condition of complicated range migration and Doppler frequency migration effects, and reducing computational load. Different f...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8610282/ |
_version_ | 1818644853724020736 |
---|---|
author | Xiang Huang Shiyang Tang Linrang Zhang Shengyuan Li |
author_facet | Xiang Huang Shiyang Tang Linrang Zhang Shengyuan Li |
author_sort | Xiang Huang |
collection | DOAJ |
description | Detection of high-speed maneuvering targets has attracted a great deal of attention recently. There are two main problems to be solved: improving detection ability under the condition of complicated range migration and Doppler frequency migration effects, and reducing computational load. Different from most existing fast algorithms which are at the cost of detection ability, this paper devises a computationally attractive method with excellent detection performance. First, the keystone transform is carried out to remove linear range migration. Thereafter, a fast discrete chirp-Fourier transform (FDCFT) based on radix-4 decomposition is proposed to compensate the undersampled linear Doppler frequency migration and quadratic Doppler frequency migration. Because of exploiting inherent symmetry and periodicity as in the fast Fourier transform (FFT), the FDCFT can largely reduce the computational complexity without performance loss. The novelty of the proposed algorithm lies in combining linear transform with the concept of decimation-in-time FFT, which avoids the demanding multi-dimensional search and severe performance loss via introducing nonlinear transforms. It is shown that the proposed method has an approximately optimal detection performance but with relatively low computational cost. |
first_indexed | 2024-12-17T00:21:27Z |
format | Article |
id | doaj.art-2c8fb8fc151641b3b646b501d86364b8 |
institution | Directory Open Access Journal |
issn | 2169-3536 |
language | English |
last_indexed | 2024-12-17T00:21:27Z |
publishDate | 2019-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Access |
spelling | doaj.art-2c8fb8fc151641b3b646b501d86364b82022-12-21T22:10:34ZengIEEEIEEE Access2169-35362019-01-017120971211310.1109/ACCESS.2019.28925058610282Ground-Based Radar Detection for High-Speed Maneuvering Target via Fast Discrete Chirp-Fourier TransformXiang Huang0Shiyang Tang1https://orcid.org/0000-0002-2868-9159Linrang Zhang2Shengyuan Li3National Laboratory of Radar Signal Processing, Xidian University, Xi’an, ChinaNational Laboratory of Radar Signal Processing, Xidian University, Xi’an, ChinaNational Laboratory of Radar Signal Processing, Xidian University, Xi’an, ChinaChina Academy of Space Technology, Xi’an, ChinaDetection of high-speed maneuvering targets has attracted a great deal of attention recently. There are two main problems to be solved: improving detection ability under the condition of complicated range migration and Doppler frequency migration effects, and reducing computational load. Different from most existing fast algorithms which are at the cost of detection ability, this paper devises a computationally attractive method with excellent detection performance. First, the keystone transform is carried out to remove linear range migration. Thereafter, a fast discrete chirp-Fourier transform (FDCFT) based on radix-4 decomposition is proposed to compensate the undersampled linear Doppler frequency migration and quadratic Doppler frequency migration. Because of exploiting inherent symmetry and periodicity as in the fast Fourier transform (FFT), the FDCFT can largely reduce the computational complexity without performance loss. The novelty of the proposed algorithm lies in combining linear transform with the concept of decimation-in-time FFT, which avoids the demanding multi-dimensional search and severe performance loss via introducing nonlinear transforms. It is shown that the proposed method has an approximately optimal detection performance but with relatively low computational cost.https://ieeexplore.ieee.org/document/8610282/Fast discrete chirp-Fourier transformDoppler frequency migrationhigh-speed maneuvering targetcoherent integration |
spellingShingle | Xiang Huang Shiyang Tang Linrang Zhang Shengyuan Li Ground-Based Radar Detection for High-Speed Maneuvering Target via Fast Discrete Chirp-Fourier Transform IEEE Access Fast discrete chirp-Fourier transform Doppler frequency migration high-speed maneuvering target coherent integration |
title | Ground-Based Radar Detection for High-Speed Maneuvering Target via Fast Discrete Chirp-Fourier Transform |
title_full | Ground-Based Radar Detection for High-Speed Maneuvering Target via Fast Discrete Chirp-Fourier Transform |
title_fullStr | Ground-Based Radar Detection for High-Speed Maneuvering Target via Fast Discrete Chirp-Fourier Transform |
title_full_unstemmed | Ground-Based Radar Detection for High-Speed Maneuvering Target via Fast Discrete Chirp-Fourier Transform |
title_short | Ground-Based Radar Detection for High-Speed Maneuvering Target via Fast Discrete Chirp-Fourier Transform |
title_sort | ground based radar detection for high speed maneuvering target via fast discrete chirp fourier transform |
topic | Fast discrete chirp-Fourier transform Doppler frequency migration high-speed maneuvering target coherent integration |
url | https://ieeexplore.ieee.org/document/8610282/ |
work_keys_str_mv | AT xianghuang groundbasedradardetectionforhighspeedmaneuveringtargetviafastdiscretechirpfouriertransform AT shiyangtang groundbasedradardetectionforhighspeedmaneuveringtargetviafastdiscretechirpfouriertransform AT linrangzhang groundbasedradardetectionforhighspeedmaneuveringtargetviafastdiscretechirpfouriertransform AT shengyuanli groundbasedradardetectionforhighspeedmaneuveringtargetviafastdiscretechirpfouriertransform |