Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): Development, external validation, and comparison to scoring systems.
The major challenge in the diagnosis of disseminated intravascular coagulation (DIC) comes from the lack of specific biomarkers, leading to developing composite scoring systems. DIC scores are simple and rapidly applicable. However, optimal fibrin-related markers and their cut-off values remain to b...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5931474?pdf=render |
_version_ | 1818142351082651648 |
---|---|
author | Jihoon G Yoon JoonNyung Heo Minkyu Kim Yu Jin Park Min Hyuk Choi Jaewoo Song Kangsan Wyi Hakbeen Kim Olivier Duchenne Soowon Eom Yury Tsoy |
author_facet | Jihoon G Yoon JoonNyung Heo Minkyu Kim Yu Jin Park Min Hyuk Choi Jaewoo Song Kangsan Wyi Hakbeen Kim Olivier Duchenne Soowon Eom Yury Tsoy |
author_sort | Jihoon G Yoon |
collection | DOAJ |
description | The major challenge in the diagnosis of disseminated intravascular coagulation (DIC) comes from the lack of specific biomarkers, leading to developing composite scoring systems. DIC scores are simple and rapidly applicable. However, optimal fibrin-related markers and their cut-off values remain to be defined, requiring optimization for use. The aim of this study is to optimize the use of DIC-related parameters through machine learning (ML)-approach. Further, we evaluated whether this approach could provide a diagnostic value in DIC diagnosis. For this, 46 DIC-related parameters were investigated for both clinical findings and laboratory results. We retrospectively reviewed 656 DIC-suspected cases at an initial order for full DIC profile and labeled their evaluation results (Set 1; DIC, n = 228; non-DIC, n = 428). Several ML algorithms were tested, and an artificial neural network (ANN) model was established via independent training and testing using 32 selected parameters. This model was externally validated from a different hospital with 217 DIC-suspected cases (Set 2; DIC, n = 80; non-DIC, n = 137). The ANN model represented higher AUC values than the three scoring systems in both set 1 (ANN 0.981; ISTH 0.945; JMHW 0.943; and JAAM 0.928) and set 2 (AUC ANN 0.968; ISTH 0.946). Additionally, the relative importance of the 32 parameters was evaluated. Most parameters had contextual importance, however, their importance in ML-approach was different from the traditional scoring system. Our study demonstrates that ML could optimize the use of clinical parameters with robustness for DIC diagnosis. We believe that this approach could play a supportive role in physicians' medical decision by integrated into electrical health record system. Further prospective validation is required to assess the clinical consequence of ML-approach and their clinical benefit. |
first_indexed | 2024-12-11T11:14:23Z |
format | Article |
id | doaj.art-2c9fb58a46ca43a5b462ec63c30daca5 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-11T11:14:23Z |
publishDate | 2018-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-2c9fb58a46ca43a5b462ec63c30daca52022-12-22T01:09:24ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-01135e019586110.1371/journal.pone.0195861Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): Development, external validation, and comparison to scoring systems.Jihoon G YoonJoonNyung HeoMinkyu KimYu Jin ParkMin Hyuk ChoiJaewoo SongKangsan WyiHakbeen KimOlivier DuchenneSoowon EomYury TsoyThe major challenge in the diagnosis of disseminated intravascular coagulation (DIC) comes from the lack of specific biomarkers, leading to developing composite scoring systems. DIC scores are simple and rapidly applicable. However, optimal fibrin-related markers and their cut-off values remain to be defined, requiring optimization for use. The aim of this study is to optimize the use of DIC-related parameters through machine learning (ML)-approach. Further, we evaluated whether this approach could provide a diagnostic value in DIC diagnosis. For this, 46 DIC-related parameters were investigated for both clinical findings and laboratory results. We retrospectively reviewed 656 DIC-suspected cases at an initial order for full DIC profile and labeled their evaluation results (Set 1; DIC, n = 228; non-DIC, n = 428). Several ML algorithms were tested, and an artificial neural network (ANN) model was established via independent training and testing using 32 selected parameters. This model was externally validated from a different hospital with 217 DIC-suspected cases (Set 2; DIC, n = 80; non-DIC, n = 137). The ANN model represented higher AUC values than the three scoring systems in both set 1 (ANN 0.981; ISTH 0.945; JMHW 0.943; and JAAM 0.928) and set 2 (AUC ANN 0.968; ISTH 0.946). Additionally, the relative importance of the 32 parameters was evaluated. Most parameters had contextual importance, however, their importance in ML-approach was different from the traditional scoring system. Our study demonstrates that ML could optimize the use of clinical parameters with robustness for DIC diagnosis. We believe that this approach could play a supportive role in physicians' medical decision by integrated into electrical health record system. Further prospective validation is required to assess the clinical consequence of ML-approach and their clinical benefit.http://europepmc.org/articles/PMC5931474?pdf=render |
spellingShingle | Jihoon G Yoon JoonNyung Heo Minkyu Kim Yu Jin Park Min Hyuk Choi Jaewoo Song Kangsan Wyi Hakbeen Kim Olivier Duchenne Soowon Eom Yury Tsoy Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): Development, external validation, and comparison to scoring systems. PLoS ONE |
title | Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): Development, external validation, and comparison to scoring systems. |
title_full | Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): Development, external validation, and comparison to scoring systems. |
title_fullStr | Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): Development, external validation, and comparison to scoring systems. |
title_full_unstemmed | Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): Development, external validation, and comparison to scoring systems. |
title_short | Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): Development, external validation, and comparison to scoring systems. |
title_sort | machine learning based diagnosis for disseminated intravascular coagulation dic development external validation and comparison to scoring systems |
url | http://europepmc.org/articles/PMC5931474?pdf=render |
work_keys_str_mv | AT jihoongyoon machinelearningbaseddiagnosisfordisseminatedintravascularcoagulationdicdevelopmentexternalvalidationandcomparisontoscoringsystems AT joonnyungheo machinelearningbaseddiagnosisfordisseminatedintravascularcoagulationdicdevelopmentexternalvalidationandcomparisontoscoringsystems AT minkyukim machinelearningbaseddiagnosisfordisseminatedintravascularcoagulationdicdevelopmentexternalvalidationandcomparisontoscoringsystems AT yujinpark machinelearningbaseddiagnosisfordisseminatedintravascularcoagulationdicdevelopmentexternalvalidationandcomparisontoscoringsystems AT minhyukchoi machinelearningbaseddiagnosisfordisseminatedintravascularcoagulationdicdevelopmentexternalvalidationandcomparisontoscoringsystems AT jaewoosong machinelearningbaseddiagnosisfordisseminatedintravascularcoagulationdicdevelopmentexternalvalidationandcomparisontoscoringsystems AT kangsanwyi machinelearningbaseddiagnosisfordisseminatedintravascularcoagulationdicdevelopmentexternalvalidationandcomparisontoscoringsystems AT hakbeenkim machinelearningbaseddiagnosisfordisseminatedintravascularcoagulationdicdevelopmentexternalvalidationandcomparisontoscoringsystems AT olivierduchenne machinelearningbaseddiagnosisfordisseminatedintravascularcoagulationdicdevelopmentexternalvalidationandcomparisontoscoringsystems AT soowoneom machinelearningbaseddiagnosisfordisseminatedintravascularcoagulationdicdevelopmentexternalvalidationandcomparisontoscoringsystems AT yurytsoy machinelearningbaseddiagnosisfordisseminatedintravascularcoagulationdicdevelopmentexternalvalidationandcomparisontoscoringsystems |