How Are Macro-Scale and Micro-Scale Built Environments Associated with Running Activity? The Application of Strava Data and Deep Learning in Inner London

Running can promote public health. However, the association between running and the built environment, especially in terms of micro street-level factors, has rarely been studied. This study explored the influence of built environments at different scales on running in Inner London. The 5Ds framework...

Full description

Bibliographic Details
Main Authors: Hongchao Jiang, Lin Dong, Bing Qiu
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:https://www.mdpi.com/2220-9964/11/10/504
Description
Summary:Running can promote public health. However, the association between running and the built environment, especially in terms of micro street-level factors, has rarely been studied. This study explored the influence of built environments at different scales on running in Inner London. The 5Ds framework (density, diversity, design, destination accessibility, and distance to transit) was used to classify the macro-scale features, and computer vision (CV) and deep learning (DL) were used to measure the micro-scale features. We extracted the accumulated GPS running data of 40,290 sample points from Strava. The spatial autoregressive combined (SAC) model revealed the spatial autocorrelation effect. The result showed that, for macro-scale features: (1) running occurs more frequently on trunk, primary, secondary, and tertiary roads, cycleways, and footways, but runners choose tracks, paths, pedestrian streets, and service streets relatively less; (2) safety, larger open space areas, and longer street lengths promote running; (3) streets with higher accessibility might attract runners (according to a spatial syntactic analysis); and (4) higher job density, POI entropy, canopy density, and high levels of PM 2.5 might impede running. For micro-scale features: (1) wider roads (especially sidewalks), more streetlights, trees, higher sky openness, and proximity to mountains and water facilitate running; and (2) more architectural interfaces, fences, and plants with low branching points might hinder running. The results revealed the linkages between built environments (on the macro- and micro-scale) and running in Inner London, which can provide practical suggestions for creating running-friendly cities.
ISSN:2220-9964