Lp-boundedness of maximal singular integral operators on product domains(乘积空间上极大奇异积分算子的Lp有界性)
用旋转法结合Fourier估计以及Littlewood-Paley理论给出了乘积空间上带粗糙核的极大奇异积分算子的Lp有界性.证明了对于Ω∈Lq(Sn-1×Sm-1),其中q>1,,且,则积域上极大奇异积分算子为Lp(Rn×Rm)有界,其中1<p<∞.从而改进了以往的结果.
Main Author: | WANGMeng(王梦) |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2003-07-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/zjup/1008-9497.2003.30.4.361-364 |
Similar Items
-
A note on Lp boundedness of maximal singular integral on product domains(关于乘积空间上极大奇异积分的Lp有界性的一点注记)
by: WANGMeng(王梦)
Published: (2000-09-01) -
Boundedness of certain Marcinkiewicz integral operators on product spaces(乘积空间上一类Marcinkiewicz积分算子的有界性)
by: JIANGLi-ya(姜丽亚)
Published: (2005-11-01) -
Lp boundedness of certain hypersingular integral along the curve(沿曲线的超奇性奇异积分算子的Lp有界性)
by: YEXiao-feng(叶晓峰), et al.
Published: (2007-07-01) -
Boundedness of Hardy-Littlewood maximal operater on weak Lorentz spaces(Hardy-Littlewood 极大算子在弱型Lorentz空间上的有界性)
by: LIHong-liang(李宏亮), et al.
Published: (2006-03-01) -
Multiplicative Archimedean Copula(乘积阿基米德Copula)
by: WANGQin(王沁), et al.
Published: (2010-03-01)