Design and Investigation of Modern UWB-MIMO Antenna with Optimized Isolation

This paper proposes a compact, semi-circular shaped multiple input multiple output (MIMO) antenna design with high isolation and enhanced bandwidth for ultrawide band (UWB) applications. A decoupling stub is used for high isolation reaching up to −55 dB over the entire bandwidth. The proposed antenn...

Full description

Bibliographic Details
Main Authors: Muhammad Irshad Khan, Muhammad Irfan Khattak, Saeed Ur Rahman, Abdul Baseer Qazi, Ahmad Abdeltawab Telba, Abdelrazik Sebak
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/11/4/432
Description
Summary:This paper proposes a compact, semi-circular shaped multiple input multiple output (MIMO) antenna design with high isolation and enhanced bandwidth for ultrawide band (UWB) applications. A decoupling stub is used for high isolation reaching up to −55 dB over the entire bandwidth. The proposed antenna is used for UWB as well as super wide band (SWB) applications. The overall size of the proposed antenna is <inline-formula> <math display="inline"> <semantics> <mrow> <mn>18</mn> <mo>×</mo> <mn>36</mn> <mo>×</mo> <mn>1.6</mn> <mo> </mo> </mrow> </semantics> </math> </inline-formula>mm<sup>3</sup>. The <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>S</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mo> </mo> </mrow> </semantics> </math> </inline-formula>and voltage standing wave ratio (VSWR) of the proposed antenna are less than −10 dB and 2, respectively, in the range of 3–40 GHz. The total impedance bandwidth of the proposed design is 37 GHz. The VSWR, <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>S</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>S</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>S</mi> <mrow> <mn>21</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>S</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, gain, envelope correlation coefficient (ECC), radiation pattern, and various other characteristic parameters are discussed in detail. The proposed antenna is optimized and simulated in a computer simulation technology (CST) studio, and printed on a FR4 substrate.
ISSN:2072-666X