The universal enveloping algebras of n-differential graded Poisson algebras(n次微分分次Poisson代数的泛包络代数)
给出了n次微分分次Poisson代数的泛包络代数的定义及相关性质,同时给出了它的应用,即e是n次微分Z-分次Poisson代数范畴到微分Z-分次代数范畴的一个共变函子和(Ae)op=(Aop)e,其中A是任意的n次微分分次Poisson代数.
Main Authors: | ZHUHui(朱卉), WUXuechao(吴学超), CHENMiaosen(陈淼森) |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2016-05-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2016.03.001 |
Similar Items
-
The tensor product of differential graded Poisson Hopf algebras(微分分次Poisson Hopf代数的张量积)
by: HUXianguo(胡献国), et al.
Published: (2018-11-01) -
Ding-graded modules and strongly Ding-graded modules(Ding分次模和强Ding分次模)
by: HANJing(韩静), et al.
Published: (2018-11-01) -
Quasi-δ-Koszul algebras(拟δ-Koszul代数)
by: PANYuan(潘媛)
Published: (2010-11-01) -
Cat weak Hopf algebras(Cat弱Hopf代数)
by: CHENXiaoyuan(陈笑缘)
Published: (2017-03-01) -
J-adic dual of algebras and modules(代数和模的J-adic对偶)
by: LUZhong-jian(陆仲坚)
Published: (2008-09-01)