A complete monotonicity property of the multiple gamma function
We consider the following functions \[ f_n(x)=1-\ln x+\frac{\ln G_n(x+1)}{x} \text{ and }g_n(x)=\frac{\@root x \of {G_n(x+1)}}{x},\; x\in (0,\infty ),\; n\in \mathbb{N}, \] where $G_n(z)=\left(\Gamma _n(z)\right)^{(-1)^{n-1}}$ and $\Gamma _n$ is the multiple gamma function of order $n$. In this work...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2020-12-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.115/ |