A Stress Orientation Analysis Framework for Dislocation Glide in Face-Centred Cubic Metals

Plastic deformation in metals is heavily influenced by the loading direction. Studies have explored its effects on multiple mechanisms by analysing individual dislocations, but there is currently no systematic way of rationalising the cooperative behaviour of the different slip systems for arbitrary...

Full description

Bibliographic Details
Main Authors: Fernando Daniel León-Cázares, Catherine Mary Fiona Rae
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/10/6/445
_version_ 1797566547663781888
author Fernando Daniel León-Cázares
Catherine Mary Fiona Rae
author_facet Fernando Daniel León-Cázares
Catherine Mary Fiona Rae
author_sort Fernando Daniel León-Cázares
collection DOAJ
description Plastic deformation in metals is heavily influenced by the loading direction. Studies have explored its effects on multiple mechanisms by analysing individual dislocations, but there is currently no systematic way of rationalising the cooperative behaviour of the different slip systems for arbitrary stress tensors. The current study constitutes the foundation of a new orientation analysis framework for face-centred cubic crystals by introducing “stress orientation maps”, graphical tools to simultaneously analyse the effects of loading orientation on the stress state of the <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mi>a</mi> <mn>2</mn> </mfrac> <mrow> <mo>〈</mo> <mn>1</mn> <mover> <mn>1</mn> <mo>¯</mo> </mover> <mn>0</mn> <mo>〉</mo> </mrow> <mrow> <mo>{</mo> <mn>111</mn> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mi>a</mi> <mn>6</mn> </mfrac> <mrow> <mo>〈</mo> <mn>112</mn> <mo>〉</mo> </mrow> <mrow> <mo>{</mo> <mn>111</mn> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula> slip systems in a comprehensive, yet intuitive way. Relationships between the Schmid and Escaig stresses are described from geometrical constraints of the slip systems in the crystal structure, linking the dislocation behaviour on a slip plane with the stress tensor via a one parameter description. The case of uniaxial loading along different orientations within the fundamental sector of the unit cell is explored to describe the physical basis, properties and capabilities of this framework. The stress normal to the slip plane is then considered in the analysis via an extension of the Mohr’s circles. The orientation dependence of two twin nucleation mechanisms from the literature are examined as examples of how the stress orientation maps can be used.
first_indexed 2024-03-10T19:28:27Z
format Article
id doaj.art-2cc4b5f4788e4f5981d51bf38b117cdc
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-10T19:28:27Z
publishDate 2020-05-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-2cc4b5f4788e4f5981d51bf38b117cdc2023-11-20T02:18:55ZengMDPI AGCrystals2073-43522020-05-0110644510.3390/cryst10060445A Stress Orientation Analysis Framework for Dislocation Glide in Face-Centred Cubic MetalsFernando Daniel León-Cázares0Catherine Mary Fiona Rae1Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, UKDepartment of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, UKPlastic deformation in metals is heavily influenced by the loading direction. Studies have explored its effects on multiple mechanisms by analysing individual dislocations, but there is currently no systematic way of rationalising the cooperative behaviour of the different slip systems for arbitrary stress tensors. The current study constitutes the foundation of a new orientation analysis framework for face-centred cubic crystals by introducing “stress orientation maps”, graphical tools to simultaneously analyse the effects of loading orientation on the stress state of the <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mi>a</mi> <mn>2</mn> </mfrac> <mrow> <mo>〈</mo> <mn>1</mn> <mover> <mn>1</mn> <mo>¯</mo> </mover> <mn>0</mn> <mo>〉</mo> </mrow> <mrow> <mo>{</mo> <mn>111</mn> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mi>a</mi> <mn>6</mn> </mfrac> <mrow> <mo>〈</mo> <mn>112</mn> <mo>〉</mo> </mrow> <mrow> <mo>{</mo> <mn>111</mn> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula> slip systems in a comprehensive, yet intuitive way. Relationships between the Schmid and Escaig stresses are described from geometrical constraints of the slip systems in the crystal structure, linking the dislocation behaviour on a slip plane with the stress tensor via a one parameter description. The case of uniaxial loading along different orientations within the fundamental sector of the unit cell is explored to describe the physical basis, properties and capabilities of this framework. The stress normal to the slip plane is then considered in the analysis via an extension of the Mohr’s circles. The orientation dependence of two twin nucleation mechanisms from the literature are examined as examples of how the stress orientation maps can be used.https://www.mdpi.com/2073-4352/10/6/445face-centred cubic crystalsorientationnon-Schmidplastic deformationdeformation twinningstress analysis
spellingShingle Fernando Daniel León-Cázares
Catherine Mary Fiona Rae
A Stress Orientation Analysis Framework for Dislocation Glide in Face-Centred Cubic Metals
Crystals
face-centred cubic crystals
orientation
non-Schmid
plastic deformation
deformation twinning
stress analysis
title A Stress Orientation Analysis Framework for Dislocation Glide in Face-Centred Cubic Metals
title_full A Stress Orientation Analysis Framework for Dislocation Glide in Face-Centred Cubic Metals
title_fullStr A Stress Orientation Analysis Framework for Dislocation Glide in Face-Centred Cubic Metals
title_full_unstemmed A Stress Orientation Analysis Framework for Dislocation Glide in Face-Centred Cubic Metals
title_short A Stress Orientation Analysis Framework for Dislocation Glide in Face-Centred Cubic Metals
title_sort stress orientation analysis framework for dislocation glide in face centred cubic metals
topic face-centred cubic crystals
orientation
non-Schmid
plastic deformation
deformation twinning
stress analysis
url https://www.mdpi.com/2073-4352/10/6/445
work_keys_str_mv AT fernandodanielleoncazares astressorientationanalysisframeworkfordislocationglideinfacecentredcubicmetals
AT catherinemaryfionarae astressorientationanalysisframeworkfordislocationglideinfacecentredcubicmetals
AT fernandodanielleoncazares stressorientationanalysisframeworkfordislocationglideinfacecentredcubicmetals
AT catherinemaryfionarae stressorientationanalysisframeworkfordislocationglideinfacecentredcubicmetals