A new exactly solvable spatially one-dimensional quantum superradiance fermi-medium model and properties of its quantum solitonic states

A new exactly solvable spatially one-dimensional quantum superradiance model describing a charged fermionic medium interacting with external electromagnetic field is proposed. The infinite hierarchy of quantuum conservation laws and many-particle Bethe eigenstates that model quantum solitonic impuls...

Full description

Bibliographic Details
Main Authors: D. Blackmore, A. Prykarpatsky
Format: Article
Language:English
Published: Institute for Condensed Matter Physics 2013-06-01
Series:Condensed Matter Physics
Subjects:
Online Access:http://dx.doi.org/10.5488/CMP.16.23701
Description
Summary:A new exactly solvable spatially one-dimensional quantum superradiance model describing a charged fermionic medium interacting with external electromagnetic field is proposed. The infinite hierarchy of quantuum conservation laws and many-particle Bethe eigenstates that model quantum solitonic impulse structures are constructed. The Hamilton operator renormalization procedure subject to a physically stable vacuum is described, the quantum excitations and quantum solitons, related with the thermodynamical equilibrity of the model, are discussed.
ISSN:1607-324X