A framework to investigate the impact of topography and product characteristics on electronic cigarette emissions.
SIGNIFICANCE:Protocols for testing and reporting emissions of Harmful and Potentially Harmful Constituents (HPHCs) from electronic cigarettes (e-cigs) are lacking. The premise of this study is that multi-path relationships may be developed to describe interactions between product characteristics, us...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC6218035?pdf=render |
_version_ | 1818274612215021568 |
---|---|
author | Risa J Robinson Nathan C Eddingsaas A Gary DiFrancesco Shehan Jayasekera Edward C Hensel |
author_facet | Risa J Robinson Nathan C Eddingsaas A Gary DiFrancesco Shehan Jayasekera Edward C Hensel |
author_sort | Risa J Robinson |
collection | DOAJ |
description | SIGNIFICANCE:Protocols for testing and reporting emissions of Harmful and Potentially Harmful Constituents (HPHCs) from electronic cigarettes (e-cigs) are lacking. The premise of this study is that multi-path relationships may be developed to describe interactions between product characteristics, use behavior and emissions to develop appropriate protocols for tobacco product regulatory compliance testing. METHODS:This study proposes a framework consisting of three component terms: HPHC mass concentration, HPHC mass ratio and total particulate mass (TPM) concentration. The framework informs experiments to investigate dependence of aerosol emissions from five electronic cigarettes spanning several design generations and three e-liquids for six repeated trials at each of ten flow conditions. RESULTS:Results are reported for TPM concentration as a function of flow conditions spanning the range of natural environment topography observed in prior studies. An empirical correlation describing TPM concentration as a function of flow conditions and coil power setting (6, 7.5 and 10 watts) for the Innokin iTaste MVP 2.0 vaporizer with Innokin iClear 30 dual coil tank is presented. Additional results document the impact of flow conditions and wick and coil design on TPM concentration through comparison of the Innokin iClear 30 (upper coil, capillary action wick) and the Innokin iClear X.I (lower coil, gravity fed wick) operated at 7.5 watts. The impact of e-liquid on TPM concentration is illustrated by comparing emissions from an NJOY Vape Pen filled with AVAIL Arctic Blast, Tobacco Row, and Mardi Gras e-liquids. TPM concentration is shown to depend upon flow conditions across a range of e-cigarette product designs including cig-a-like, pen-style, box-mod and emergent disposable-cartridge style devices. CONCLUSIONS:A framework provides a foundation for reporting emissions across a variety of e-cigs, e-liquids and research laboratories. The study demonstrates TPM concentration is a function of topography behavior (i.e. puff flow rate and puff duration) for varying device operating power and product characteristics. |
first_indexed | 2024-12-12T22:16:37Z |
format | Article |
id | doaj.art-2ce8d2a1392f46f1a87d262bbc35edec |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-12T22:16:37Z |
publishDate | 2018-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-2ce8d2a1392f46f1a87d262bbc35edec2022-12-22T00:10:04ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-011311e020634110.1371/journal.pone.0206341A framework to investigate the impact of topography and product characteristics on electronic cigarette emissions.Risa J RobinsonNathan C EddingsaasA Gary DiFrancescoShehan JayasekeraEdward C HenselSIGNIFICANCE:Protocols for testing and reporting emissions of Harmful and Potentially Harmful Constituents (HPHCs) from electronic cigarettes (e-cigs) are lacking. The premise of this study is that multi-path relationships may be developed to describe interactions between product characteristics, use behavior and emissions to develop appropriate protocols for tobacco product regulatory compliance testing. METHODS:This study proposes a framework consisting of three component terms: HPHC mass concentration, HPHC mass ratio and total particulate mass (TPM) concentration. The framework informs experiments to investigate dependence of aerosol emissions from five electronic cigarettes spanning several design generations and three e-liquids for six repeated trials at each of ten flow conditions. RESULTS:Results are reported for TPM concentration as a function of flow conditions spanning the range of natural environment topography observed in prior studies. An empirical correlation describing TPM concentration as a function of flow conditions and coil power setting (6, 7.5 and 10 watts) for the Innokin iTaste MVP 2.0 vaporizer with Innokin iClear 30 dual coil tank is presented. Additional results document the impact of flow conditions and wick and coil design on TPM concentration through comparison of the Innokin iClear 30 (upper coil, capillary action wick) and the Innokin iClear X.I (lower coil, gravity fed wick) operated at 7.5 watts. The impact of e-liquid on TPM concentration is illustrated by comparing emissions from an NJOY Vape Pen filled with AVAIL Arctic Blast, Tobacco Row, and Mardi Gras e-liquids. TPM concentration is shown to depend upon flow conditions across a range of e-cigarette product designs including cig-a-like, pen-style, box-mod and emergent disposable-cartridge style devices. CONCLUSIONS:A framework provides a foundation for reporting emissions across a variety of e-cigs, e-liquids and research laboratories. The study demonstrates TPM concentration is a function of topography behavior (i.e. puff flow rate and puff duration) for varying device operating power and product characteristics.http://europepmc.org/articles/PMC6218035?pdf=render |
spellingShingle | Risa J Robinson Nathan C Eddingsaas A Gary DiFrancesco Shehan Jayasekera Edward C Hensel A framework to investigate the impact of topography and product characteristics on electronic cigarette emissions. PLoS ONE |
title | A framework to investigate the impact of topography and product characteristics on electronic cigarette emissions. |
title_full | A framework to investigate the impact of topography and product characteristics on electronic cigarette emissions. |
title_fullStr | A framework to investigate the impact of topography and product characteristics on electronic cigarette emissions. |
title_full_unstemmed | A framework to investigate the impact of topography and product characteristics on electronic cigarette emissions. |
title_short | A framework to investigate the impact of topography and product characteristics on electronic cigarette emissions. |
title_sort | framework to investigate the impact of topography and product characteristics on electronic cigarette emissions |
url | http://europepmc.org/articles/PMC6218035?pdf=render |
work_keys_str_mv | AT risajrobinson aframeworktoinvestigatetheimpactoftopographyandproductcharacteristicsonelectroniccigaretteemissions AT nathanceddingsaas aframeworktoinvestigatetheimpactoftopographyandproductcharacteristicsonelectroniccigaretteemissions AT agarydifrancesco aframeworktoinvestigatetheimpactoftopographyandproductcharacteristicsonelectroniccigaretteemissions AT shehanjayasekera aframeworktoinvestigatetheimpactoftopographyandproductcharacteristicsonelectroniccigaretteemissions AT edwardchensel aframeworktoinvestigatetheimpactoftopographyandproductcharacteristicsonelectroniccigaretteemissions AT risajrobinson frameworktoinvestigatetheimpactoftopographyandproductcharacteristicsonelectroniccigaretteemissions AT nathanceddingsaas frameworktoinvestigatetheimpactoftopographyandproductcharacteristicsonelectroniccigaretteemissions AT agarydifrancesco frameworktoinvestigatetheimpactoftopographyandproductcharacteristicsonelectroniccigaretteemissions AT shehanjayasekera frameworktoinvestigatetheimpactoftopographyandproductcharacteristicsonelectroniccigaretteemissions AT edwardchensel frameworktoinvestigatetheimpactoftopographyandproductcharacteristicsonelectroniccigaretteemissions |