First analyses of lysine succinylation proteome and overlap between succinylation and acetylation in Solenopsis invicta Buren (Hymenoptera: Formicidae)

Abstract Background Lysine succinylation (Ksu) exists in both eukaryotes and prokaryotes, and influences a variety of metabolism processes. However, little attention has been paid to Ksu in insects, especially the notorious invasive pest Solenopsis invicta. Results In this study, the first analyses...

Full description

Bibliographic Details
Main Authors: Jingwen Ye, Jun Li
Format: Article
Language:English
Published: BMC 2022-01-01
Series:BMC Genomics
Subjects:
Online Access:https://doi.org/10.1186/s12864-021-08285-8
Description
Summary:Abstract Background Lysine succinylation (Ksu) exists in both eukaryotes and prokaryotes, and influences a variety of metabolism processes. However, little attention has been paid to Ksu in insects, especially the notorious invasive pest Solenopsis invicta. Results In this study, the first analyses of Ksu proteome and overlap between Ksu and lysine acetylation (Kac) in S. invicta were presented. 3753 succinylated sites in 893 succinylated proteins were tested. The dihydrolipoyl dehydrogenase, V-type proton ATPase subunit G, and tubulin alpha chain all had evolutionary conservatism among diverse ant or bee species. Immunoblotting validation showed that there were many Ksu protein bands with a wide range of molecular mass. In addition, 1230 sites in 439 proteins were highly overlapped between Ksu and Kac. 54.05% of Ksu proteins in cytoplasm were acetylated. The results demonstrated that Ksu may play a vital part in the allergization, redox metabolism, sugar, fat, and protein metabolism, energy production, immune response, and biosynthesis of various secondary metabolites. Conclusions Ksu and Kac were two ubiquitous protein post-translational modifications participated in a variety of biological processes. Our results may supply rich resources and a starting point for the molecular basic research of regulation on metabolic pathways and other biological processes by succinylation and acetylation.
ISSN:1471-2164