Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang

<p class="Abstract">The selection process among outstanding students in a department has a big problem. This process is not fair because only involve one criteria and ignore the other criteria. We need the best student to participate in a competition held by the Indonesia Security In...

Full description

Bibliographic Details
Main Authors: Asroni Asroni, Ronald Adrian
Format: Article
Language:English
Published: Universitas Muhammadiyah Yogyakarta 2016-01-01
Series:Semesta Teknika
Subjects:
Online Access:https://journal.umy.ac.id/index.php/st/article/view/708
_version_ 1819004802969894912
author Asroni Asroni
Ronald Adrian
author_facet Asroni Asroni
Ronald Adrian
author_sort Asroni Asroni
collection DOAJ
description <p class="Abstract">The selection process among outstanding students in a department has a big problem. This process is not fair because only involve one criteria and ignore the other criteria. We need the best student to participate in a competition held by the Indonesia Security Incident Response Team on Internet Infrastructure (ID SIRTII) of the Ministry of Communication and Information. This process uses Weka software to calculate the best student. It provides the various method to explore the data. One of them is clustering method. There are many algorithms in clustering method. In this research, we will investigate widely about one of that algorithms. Its name is K-Means. This algorithm (K-Means) will give the recommendations about the best student based on the cluster. It will represent the many clusters of a student group. The best cluster can be calculated more to get the names of the best students group. They are eligible to enter the competition.  K-means involve the GPA (Grade Point Average) and related course to support the academic skill in order to get the best student. This research helps the teacher select the best student to enter the competition. Many similar cases can use this algorithm in order to get the best student.</p>
first_indexed 2024-12-20T23:42:41Z
format Article
id doaj.art-2cfd5020f1c642989ea655c948f2b2dd
institution Directory Open Access Journal
issn 1411-061X
2502-5481
language English
last_indexed 2024-12-20T23:42:41Z
publishDate 2016-01-01
publisher Universitas Muhammadiyah Yogyakarta
record_format Article
series Semesta Teknika
spelling doaj.art-2cfd5020f1c642989ea655c948f2b2dd2022-12-21T19:23:02ZengUniversitas Muhammadiyah YogyakartaSemesta Teknika1411-061X2502-54812016-01-011817682611Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM MagelangAsroni Asroni0Ronald Adrian1Universitas Muhammadiyah YogyakartaUniversitas Muhammadiyah Yogyakarta<p class="Abstract">The selection process among outstanding students in a department has a big problem. This process is not fair because only involve one criteria and ignore the other criteria. We need the best student to participate in a competition held by the Indonesia Security Incident Response Team on Internet Infrastructure (ID SIRTII) of the Ministry of Communication and Information. This process uses Weka software to calculate the best student. It provides the various method to explore the data. One of them is clustering method. There are many algorithms in clustering method. In this research, we will investigate widely about one of that algorithms. Its name is K-Means. This algorithm (K-Means) will give the recommendations about the best student based on the cluster. It will represent the many clusters of a student group. The best cluster can be calculated more to get the names of the best students group. They are eligible to enter the competition.  K-means involve the GPA (Grade Point Average) and related course to support the academic skill in order to get the best student. This research helps the teacher select the best student to enter the competition. Many similar cases can use this algorithm in order to get the best student.</p>https://journal.umy.ac.id/index.php/st/article/view/708clustering, k-means, algorithm
spellingShingle Asroni Asroni
Ronald Adrian
Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang
Semesta Teknika
clustering, k-means, algorithm
title Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang
title_full Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang
title_fullStr Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang
title_full_unstemmed Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang
title_short Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang
title_sort penerapan metode k means untuk clustering mahasiswa berdasarkan nilai akademik dengan weka interface studi kasus pada jurusan teknik informatika umm magelang
topic clustering, k-means, algorithm
url https://journal.umy.ac.id/index.php/st/article/view/708
work_keys_str_mv AT asroniasroni penerapanmetodekmeansuntukclusteringmahasiswaberdasarkannilaiakademikdenganwekainterfacestudikasuspadajurusanteknikinformatikaummmagelang
AT ronaldadrian penerapanmetodekmeansuntukclusteringmahasiswaberdasarkannilaiakademikdenganwekainterfacestudikasuspadajurusanteknikinformatikaummmagelang