Development of a global model of mineral dust aerosol microphysics
A mineral dust module is developed and implemented into the global aerosol microphysics model, GISS-TOMAS. The model is evaluated against long-term measurements of dust surface mass concentrations and deposition fluxes. Predicted mass concentrations and deposition fluxes are in error on average by a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2009-04-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/9/2441/2009/acp-9-2441-2009.pdf |
_version_ | 1818691118935572480 |
---|---|
author | Y. H. Lee K. Chen P. J. Adams |
author_facet | Y. H. Lee K. Chen P. J. Adams |
author_sort | Y. H. Lee |
collection | DOAJ |
description | A mineral dust module is developed and implemented into the global aerosol microphysics model, GISS-TOMAS. The model is evaluated against long-term measurements of dust surface mass concentrations and deposition fluxes. Predicted mass concentrations and deposition fluxes are in error on average by a factor of 3 and 5, respectively. The comparison shows that the model performs better near the dust source regions but underestimates surface concentrations and deposition fluxes in more remote regions. Including only sites with measured dust concentrations of at least 0.5 μg m<sup>&minus;3</sup>, the model prediction agrees with observations to within a factor of 2. It was hypothesized that the lifetime of dust, 2.6 days in our base case, is too short and causes the underestimation in remote areas. However, a sensitivity simulation with smaller dust particles and increased lifetime, 3.7 days, does not significantly improve the comparison. These results suggest that the underestimation of mineral dust in remote areas may result from local factors/sources not well described by the global dust source function used here or the GCM meteorology. The effect of dust aerosols on CCN(0.2%) concentrations is negligible in most regions of the globe; however, CCN(0.2%) concentrations change decrease by 10–20% in dusty regions the impact of dust on CCN(0.2%) concentrations in dusty regions is very sensitive to the assumed size distribution of emissions. If emissions are predominantly in the coarse mode, CCN(0.2%) decreases in dusty regions up to 10–20% because dust competes for condensable H<sub>2</sub>SO<sub>4</sub>, reducing the condensational growth of ultrafine mode particles to CCN sizes. With significant fine mode emissions, however, CCN(0.2%) doubles in Saharan source regions because the direct emission of dust particles outweighs any microphysical feedbacks. The impact of dust on CCN concentrations active at various water supersaturations is also investigated. Below 0.1%, CCN concentrations increase significantly in dusty regions due to the presence of coarse dust particles. Above 0.2%, CCN concentrations show a similar behavior as CCN(0.2%). |
first_indexed | 2024-12-17T12:36:49Z |
format | Article |
id | doaj.art-2d024fd0ef2442b0bc6a0f3df3850b74 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-17T12:36:49Z |
publishDate | 2009-04-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-2d024fd0ef2442b0bc6a0f3df3850b742022-12-21T21:48:14ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242009-04-019724412458Development of a global model of mineral dust aerosol microphysicsY. H. LeeK. ChenP. J. AdamsA mineral dust module is developed and implemented into the global aerosol microphysics model, GISS-TOMAS. The model is evaluated against long-term measurements of dust surface mass concentrations and deposition fluxes. Predicted mass concentrations and deposition fluxes are in error on average by a factor of 3 and 5, respectively. The comparison shows that the model performs better near the dust source regions but underestimates surface concentrations and deposition fluxes in more remote regions. Including only sites with measured dust concentrations of at least 0.5 μg m<sup>&minus;3</sup>, the model prediction agrees with observations to within a factor of 2. It was hypothesized that the lifetime of dust, 2.6 days in our base case, is too short and causes the underestimation in remote areas. However, a sensitivity simulation with smaller dust particles and increased lifetime, 3.7 days, does not significantly improve the comparison. These results suggest that the underestimation of mineral dust in remote areas may result from local factors/sources not well described by the global dust source function used here or the GCM meteorology. The effect of dust aerosols on CCN(0.2%) concentrations is negligible in most regions of the globe; however, CCN(0.2%) concentrations change decrease by 10–20% in dusty regions the impact of dust on CCN(0.2%) concentrations in dusty regions is very sensitive to the assumed size distribution of emissions. If emissions are predominantly in the coarse mode, CCN(0.2%) decreases in dusty regions up to 10–20% because dust competes for condensable H<sub>2</sub>SO<sub>4</sub>, reducing the condensational growth of ultrafine mode particles to CCN sizes. With significant fine mode emissions, however, CCN(0.2%) doubles in Saharan source regions because the direct emission of dust particles outweighs any microphysical feedbacks. The impact of dust on CCN concentrations active at various water supersaturations is also investigated. Below 0.1%, CCN concentrations increase significantly in dusty regions due to the presence of coarse dust particles. Above 0.2%, CCN concentrations show a similar behavior as CCN(0.2%).http://www.atmos-chem-phys.net/9/2441/2009/acp-9-2441-2009.pdf |
spellingShingle | Y. H. Lee K. Chen P. J. Adams Development of a global model of mineral dust aerosol microphysics Atmospheric Chemistry and Physics |
title | Development of a global model of mineral dust aerosol microphysics |
title_full | Development of a global model of mineral dust aerosol microphysics |
title_fullStr | Development of a global model of mineral dust aerosol microphysics |
title_full_unstemmed | Development of a global model of mineral dust aerosol microphysics |
title_short | Development of a global model of mineral dust aerosol microphysics |
title_sort | development of a global model of mineral dust aerosol microphysics |
url | http://www.atmos-chem-phys.net/9/2441/2009/acp-9-2441-2009.pdf |
work_keys_str_mv | AT yhlee developmentofaglobalmodelofmineraldustaerosolmicrophysics AT kchen developmentofaglobalmodelofmineraldustaerosolmicrophysics AT pjadams developmentofaglobalmodelofmineraldustaerosolmicrophysics |