Conceptual Design and Numerical Validation of a Carbon-Based Ink Injector

This paper shows the design of an injector, using carbon nanotubes as inkjet material, implemented in a 3D printer. According to the available literature, few injectors are capable of depositing material. Due to the lack of information, the central part of this research is to develop a suitable devi...

Full description

Bibliographic Details
Main Authors: Arleth Ortega-Gutiérrez, Job Eli Escobar-Flores, Mario Alberto Grave-Capistrán, Noé López-Perrusquia, Marco Antonio Doñu-Ruiz, Armando Oropeza-Osornio, Christopher René Torres-SanMiguel
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/19/6545
Description
Summary:This paper shows the design of an injector, using carbon nanotubes as inkjet material, implemented in a 3D printer. According to the available literature, few injectors are capable of depositing material. Due to the lack of information, the central part of this research is to develop a suitable device for ink injection that is capable of applying the Fused Deposition Modeling (FDM) method to print nanomaterial ink. The injector was designed using a CAD program based on an open-source desktop 3D printer, which allows it to be modified according to the needs of the injector. This prototype was manufactured in aluminum alloy 7075T6. Computational fluid dynamics (CFD) were carried out to analyze the behavior of the fluid when it passes through the injector, obtaining parameters such as pressure, velocity, and vorticity. An experimental matrix of the injector operation was carried out to achieve an adequate printing speed. The results show that the optimum speed was 250 ms, considering that a temperature of 100 °C is needed in the heated bed to dry the ink so that it does not undergo expansion.
ISSN:1996-1944